
 

Bachelorarbeit  

im Bachelorstudiengang  

Informationsmanagement im Gesundheitswesen 
an der Hochschule für angewandte Wissenschaften Neu-Ulm 

 

Comparing Different Pitch Detection 
Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erstkorrektor:   Prof. Dr. Johannes Schobel 

Zweitkorrektor:  Prof. Dr. Peter Kuhn 

Betreuer:   Maximilian Karthan 

 

Verfasser:   Tasmiah Hasnat (Matrikel-Nr.: 3131777) 

 

Thema erhalten:  25.06.2023 

Arbeit abgegeben:  15.11.2023 



Acknowledgements I 

Acknowledgements 
 

This thesis acknowledgement is a tribute to everyone who made my journey worthwhile. 

I would like to thank Prof. Dr. Johannes Schobel and Prof. Dr. Peter Kuhn for trusting 

me and providing me a challenging as well as interesting topic. The completion of this 

thesis owes a great deal to their unwavering support. I would also like to thank 

Maximilian Karthan for providing vital information and insight into the project, answering 

all my technical questions and being an essential part of each phase leading up to the 

successful development of the project. Special thanks are due to my family, whose 

unwavering encouragement fortified my resolve throughout the process of completing 

this dissertation. 



Abstract II 

Abstract 
 

Effective speech therapy is fundamental in aiding individuals with speech and language 

challenges to achieve better communication. Precise pitch detection is a cornerstone of 

this endeavor, influencing intonation and expressive communication. This research 

undertakes a comparison of pitch detection algorithms, with an eye towards future 

integration into speech therapy apps for Logopedic practice. While immediate 

implementation is not the focus, the study sets the stage for enhancing therapeutic 

interventions, empowering Logopedic practitioners, and improving communications skills 

individuals facing speech and language challenges. 

 

This Bachelor thesis presents a comparative study of pitch detection algorithms, with a 

specific focus on the implementation and comparison of the Autocorrelation Function 

(ACF) and ACF combined with parabolic interpolation algorithms in the Typescript 

programming language. The primary aim is to determine the superior algorithm in terms 

of accuracy and performance, providing valuable insights for potential future integration 

into speech therapy apps within the field of Logopedics. 
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1 Introduction  
 

Addressing communication and quality of life issues for individuals with speech and 

language impairments, speech therapy is a crucial discipline within orthopedics. Pitch 

detection is significant not only for music analysis and voice recognition but also for 

medical diagnostics, disease diagnosis, and treatment associated with speech. Pitch 

detection algorithms have made significant advancements from the early conceptual 

stages. The history of pitch detection can be traced back to the 18th and 19th centuries 

when scientists and musicians began studying the physics of sound. Scientists like 

Joseph Fourier made significant contributions to the understanding of signal analysis 

and the decomposition of complex sounds into simpler sinusoidal components (Cf. 

Struik, 2023).  

 

Effective communication is a vital skill essential for human interaction. Pitch detection, 

situated within the realm of audio signal processing, is a multifaceted task. The 

estimation of fundamental frequency involves determining the perceived pitch of an audio 

signal, whether it is a musical note, spoken vowel or any other sound. In the field of 

speech therapy, clear and expressive communication is of paramount importance, 

particularly for children. The main project is a Speech Therapy App, which is still under 

construction, and this thesis plays a small part in it. The thesis mainly concentrates in 

the pitch detection part, using Typescript programming to investigate and compare 

various pitch detection algorithms. The aim is to find the best match for the Application. 

The primary objective is to develop a robust tool for future speech therapy applications, 

specifically targeting at children receiving Logopedic Therapy. 

 

1.1 Background and Motivation 
 

The IQWiG (Institute für Qualität und Wirtschaftlichkeit in Gesundheitswesen) reports 

that approximately 8% of all children suffer from a specific language development 

disorder, with boys being twice as prone to it as girls (Cf. IQWiG, 2023). The German 

Journal of Health Monitoring states that 15.0% of recipients of speech and language 

treatment are children between the ages of 3-6. Over the past ten years, children and 

adolescents have used speech therapy far more frequently. Those from low 

socioeconomic backgrounds are more prone to seeking speech therapy services (Cf. 

Rommel et al., 2018). Later-life language challenges can significantly impair 

understanding, which can lower academic attainment and limit professional 
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opportunities. Youngsters who struggle with language may feel less confident, anxious, 

teased, and under psychological stress. Later on, endure reading and writing disorders. 

Treatment for language disorders typically involves speech therapy sessions, consisting 

of age-appropriate exercises aimed at improving pronunciation, sentence construction 

and furthermore. 

 

The study of pitch detection has a long history in the field of audio signal processing. In 

recent years, technology and innovative algorithms have greatly advanced the field of 

speech analysis and therapy. Pitch, frequently defined as the perceived fundamental 

frequency of sound, is a valuable indicator for the diagnosis and treatment of speech 

disorders, making it a crucial part of speech therapy. Recognizing the emotional nuances 

and intentions behind spoken words becomes possible through the analysis of pitch 

variations. Consequently, the accuracy of pitch detection directly impacts the 

effectiveness of these applications. Beyond the world of music and speech, pitch 

detection finds applications in medical diagnostics, particularly in the field of Logopedics. 

Voice disorders and speech pathologies often manifest as alterations in pitch patterns. 

Speech pathologists and Logopedics utilize pitch analysis to diagnose and treat patients 

with various speech disorders, helping individuals regain their ability to communicate 

effectively (Cf. Behlau et al., 2021). Although the primary focus may not be the immediate 

implementation of these discoveries, the consequences that may arise are not 

noteworthy. The research’s findings may influence the creation of new speech therapy 

technologies in the future.  

 

Traditional pitch detection methods have enabled the development of advanced 

algorithms that offer improved accuracy and efficiency. This thesis aims to evaluate the 

efficacy and performance of two pitch detection algorithms, with a specific emphasis on 

their implementation in Typescript. The study's implications extend beyond academic 

research to greatly improve speech therapy practices in logopedics. The goal is to 

provide valuable insights into the strengths and weaknesses of these algorithms to guide 

the development of future speech therapy applications. 

 

The motivation for this study arises from the paramount importance of accurate pitch 

detection in these diverse domains. While numerous pitch detection algorithms have 

been proposed, each has its unique strengths and limitations. The choice of an algorithm 

depends on the specific application and its requirements (Cf. Gunsteren and Berendsen, 

1977). Therefore, it is imperative to undertake a systematic exploration and comparison 

of these algorithms to understand their suitability for various tasks. 
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1.2 Organization of the thesis 
 

This thesis is structured to provide a comprehensive examination of pitch detection 

algorithms, their implementation, and an extensive comparative analysis. The content is 

organized into the following chapters: 

 

• Introduction: This brief opening chapter offers an overview of the research topic, 

introduces its importance, and outlines the structure of the thesis. 
• Fundamentals: This section delves into the foundational concepts and theories 

necessary to understand the research. It lays the groundwork for readers who 

may not be familiar with the subject matter. 

• Algorithms: An introduction to various pitch detection algorithms is presented, 

even if not all of them are implemented. This section helps readers grasp the 

theoretical background of the chosen algorithms. 

• Implementation: Details on the technical implementation of the selected 

algorithms are discussed, including code snippets and implementation strategies. 

• Results: This section presents the research findings and outcomes, comparing 

the performance of the implemented algorithms based on the established criteria. 

• Discussion: The results are analyzed and interpreted in this chapter, addressing 

the research questions, and providing insights into the significance of the 

findings. 
• Summary and Outlook: The final chapter summarizes the key findings and 

contributions of the research, discusses their implications, and offers suggestions 

for the future research and potential applications. 
• References: A comprehensive list of citations and references used throughout 

the thesis is provided. 
 

Through this structure, the aim is to create valuable resource for researchers, engineers, 

and practitioners interested in gaining a deep understanding of pitch detection algorithms 

and making informed decisions about the choice of algorithms for their applications. 
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2 Fundamentals 
 

This section provides definition for few terms such as: “Pitch”, “Frequency”, “Audio Signal 

Processing”, to enhance clarity and facilitate comprehension.  

 

2.1 Pitch and Frequency 
 

The definition of Pitch falls into two broad categories: those that make a reference to the 

association between pitch and the musical scale and those that avoid a reference to 

music (Plack and Oxenham, 2006). Pitch can be described as the perceptual attributes 

of a sound, which are denoted as “high” or “low”. It plays a significant role determining 

its position on the musical scale (Cf.Klapuri, 2006). It signifies the frequency of sound 

waves whereby a higher frequency generates a higher pitch and vice versa. Pitch holds 

significant importance in music, as it facilitates the creation of melodies, harmonies, and 

chords.  

 

Variations in pitch during speech can convey varied meanings through intonation, such 

as making an inquiry, demonstrating astonishing or showing emphasis for example, a 

rising pitch at the end of a sentence often indicates a question, while a falling pitch 

signifies a statement. Oxenham state that, pitch is a fundamental component of auditory 

perception that is crucial for comprehending speech, enjoy music and selectively 

attending to specific sounds (Cf. Oxenham, 2023). Specifically in the inner ear's cochlea 

and the auditory cortex in the brain. 

 

Pitch is affected by how quickly or slowly an object vibrates. To human hearing, sounds 

can sound differently depending on their pitches, frequencies, wavelengths, and 

loudness. The approach of the brain to speech and music differs. Music employs the 

rostromedial prefrontal cortex to understand musical notes and pitch, whereas speech 

uses the right side of the brain for pitch comprehension(Peretz and Coltheart, 2003). 

According to Peretz and Coltheart, music utilizes a greater number of brain regions and 

a more extensive network of brain regions, concentrating on the direction of pitch 

changes. 

 

According to Byron Emerson Blair frequency is defined as the amount of cycles of a 

repeating event per unit of time, typically measured in hertz (Hz)(Blair, 1974 ,p.10). When 

a periodic occurrence completes one cycle within a second, its frequency is equivalent 
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to 1Hz. The frequency of a sound determines its pitch; as frequency increases, pitch 

rises, and as frequency decreases, pitch drops. A small bird’s chirping has a higher pitch 

and frequency compared to the lower pitch and frequency of thunder rumbling. 

Frequency is an integral and precise parameter that can be regulated and gauged with 

minimal error, thereby making it an important tool both scientific and technological 

arenas.  

 

High-pitched sounds are produced by rapid vibrations that have high frequencies. Low 

frequencies are responsible for producing low-pitched sounds, which are produced by 

sluggish vibrations. The wavelength of a higher pitched sound is shorter, and the 

wavelength of a lower pitched sound is longer (Figure 1). 

The source and the medium through which sound wave disperse influence how we hear 

it. The source itself must vibrate at anywhere between 20 Hz – 20000 kHz and it is the 

limit of human ear. This range is influenced by individual differences, such as age and 

hearing ability. And when it does, the back-and-forth motion of the vibration pushes air 

molecules.  

 

 

During the first half of the oscillation- when the source moves forward, molecules are 

pushed forward and bunch together with molecules in front of them. This causes an 

increase in the density of air at that point. This region is called compression. It is 

represented by the crest of a sine wave. During the second half of the oscillation when 

the source moves back to its original position. It leaves a void, so there are fewer air 

molecules in that region and thus a decrease in the density of air at that point. This region 

is called rarefaction. It is represented by the trough of a sine wave. This is one single 

oscillation. 

 

Figure 1: Low- and High pitch adapted from Hearing: Additional Information, 
source: (Genetic Science Learning Center, 2014) 
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The quantity of wave peaks in a given amount of time is known as frequency. The pitch 

increases with the number of peaks in this period. The distance between two wave peaks 

or trough is known as a wavelength (Figure 2). 

 

 

 

2.2 Audio Signal Processing 
 

The following section about audio signal processing is based on the book section “Audio 

Signal Processing” from the book “Speech, Audio, Image and Biomedical Signal 

Processing using Neural Networks” (Cf. Rao, 2008). 

 

Audio signal processing is a method utilized to interpret and manipulate audio signals, 

with the main objective of classifying audio. The procedure involves assessing general 

audio signal characteristics, utilizing time-frequency represents for audio, and examining 

useful features for classification. Additionally, the process entails removing features from 

audio signals to obtain relevant information. The objective of audio signal processing is 

mimic the abilities of the human auditory system in processing complex sound mixtures 

and creating sophisticated representations of the surroundings. This feature is 

advantageous in several areas, such as automatic music transcription, multimedia data 

search and retrieval, and speech recognition in noisy environment.  

 

In the realm of music production, audio signal processing holds significant importance 

as it enables the creation of various audio effects and facilitates the classification of audio 

content. Given the expanding digital music repositories, it supports record indexing and 

Figure 2: Pitch of Sound adapted from article “What is Pitch of Sound?”, source: (Vedantu, 2023) 
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audio classification, improving retrieval and coding efficiency by matching compression 

methods to audio types. 

 

Speech recognition applications require audio signal processing, especially in noisy 

settings. In the procedure, sources are separated and identified from the incoming 

composite audio signal. The technique is referred to as auditory scene analysis. This 

makes it feasible for the system to precisely transcribe and detect speech even in the 

presence of background noise by analyzing and isolating speech signals. Signal models 

that can be generated from perception, cognition, and sound creation should be used to 

process the audio signal. Audio signal processing often involves specialized software, 

and programming languages like Python, Java, MATLAB, and C/C++ (Cf. Devaney, 

2021). 
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3 Pitch Detection Algorithms 
 

3.1 Introduction to various Pitch Detection Algorithms 
 

In this section, various pitch detection techniques will be introduced. Pitch detection is a 

key issue in audio signal processing, with numerous techniques available for reliably 

measuring the fundamental frequency (pitch) of an audio source. These algorithms 

display differences in complexity, accuracy, and applicability for different types of signals. 

Below is an overview of various widely used pitch detection algorithms:  

 

3.1.1 Average Magnitude Difference Function 
 

In this section, the discussion on Average Magnitude Difference Function is primarily 

based on the work of (Cf. Ross et al., 1974, Muhammad, 2011) and (Cf. Muhammad, 

2011). 

 

In speech and audio signal processing, the AMDF (Average Magnitude Difference 

Function) method is analogous to the autocorrelation method. The AMDF analysis is a 

sunset of ACF analysis. Rather than associating the input speech signal with distinct time 

delays, the AMDF approach includes establishing a difference signal between the 

original and delayed versions. The absolute magnitude of this difference signal is then 

determined for each delay value. The AMDF technique has a significant advantage, 

particularly in real-time applications, in that it does not require multiplication operations. 

As a result, it is a viable option for situations where computational efficiency is critical. 

 

The Average Magnitude Difference Function (AMDF) is defined as follows: 

 

𝐷(") =	
1

𝑁 − 𝜏 − 1
( |𝑥(𝑛) − 𝑥(𝑛 + 𝜏)|

$%"%&

'()

 

 

The input signal is represented by the sequence x(n), which is essentially a series of 

samples from a speech or audio signal. The formula utilizes a positive integer, t, which 

serves as a lag parameter. It denotes the temporal discrepancy or delay existing between 

the signal and its delayed variation. The signal length is denoted by N, defining x(n) for 

0<= n <= N-1. For every value of t, the formula computes the absolute difference 
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between x(n) and x (n+ t) over a particular range of n. The range of n spans from 0 to N- 

t-1.  

This absolute disparity quantifies the variation of the signal over the time delay t. The 

absolute differences are summed up within the defined range of n by applying the 

summation symbol å. The AMDF value for a specific lag t is obtained by dividing the 

summation result by N-t-1. This division works as a normalization step and guarantees 

that the AMDF value remains unaffected by the signal length, making it more reliable and 

facilitating comparisons between signals of varying lengths. 

 

 

Table 1 presents a comprehensive overview of the advantages and disadvantages, as 

well as the different areas and usage of the AMDF. 

 

Field and Applications Advantages  Disadvantages 
AMDF is employed in 

speech recognition to 

estimate the fundamental 

frequency (pitch) of the 

speech signal, which is a 

vital feature for speech 

recognition systems. By 

precisely detecting the 

pitch, AMDF enhances the 

performance of speech 

recognition algorithms. 

 

In the context of music 

analysis, the use of AMDF 

is prevalent for purposes 

such as melody extraction, 

pitch tracking, and note 

transcription.  

 

The technique facilitates 

the identification of the 

basic frequency of musical 

Simple measurement: The 

AMDF offers a precise 

estimation of the pitch 

contour, making it a 

straightforward 

measurement. 

 

No multiply operations: 

Unlike other pitch 

extraction methods such 

as ACF (Autocorrelation 

Function) or CCF (Cross-

Correlation Function), the 

AMDF does not 

necessitate multiply 

operations, thus 

significantly enhancing its 

computational efficiency. 

 

Suitable for 

implementation on 

different platforms: 

A significant drawback of 

the AMDF method is its 

tendency to decrease in 

the latter half of a frame, 

which may result in 

incorrect pitch detection 

even in low noise 

conditions.  

 

Furthermore, the AMDF 

technique is susceptible to 

noise and variations in 

intensity, potentially 

yielding false pitch 

detection. 
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notes and the tracing of 

their fluctuations 

throughout time. 

Additionally, it is suitable 

for implementation on 

diverse platforms. The 

nature of AMDF's 

operations renders it well-

suited for development on 

programmable processors 

or in specialized hardware. 

 

Wide dynamic range: As 

the AMDF does not have 

restrictive dynamic range 

constraints, it is also 

compatible with 16-bit 

machines. 
Table 1: Fields, applications, advantages, and disadvantages of AMDF 

 

 

3.1.2 YIN 
 

In this section, the discussion on YIN is primarily based on the work of (Cf. De Cheveigné 

and Kawahara, 2002). 

 

The YIN Algorithm was first introduced in 2002 by the scientists Alain de Cheveigné and 

Hideki Kawahara. It is an algorithm that can estimate the fundamental frequency (F0) of 

speech and music sounds with a high degree of accuracy. Notably, YIN can explore a 

broad frequency range without top-end limits. It applies the autocorrelation method, 

which it modifies to reduce error rates. Moreover, it can work well with high-pitched 

voices and music. Implementing YIN is undemanding, with low latency, and requires only 

minimal parameter adjustment. The signal model-based algorithm can be expanded to 

handle diverse forms of aperiodicity. 

 

The YIN algorithm comprises multiple steps. Firstly, it computes the difference function, 

which denotes the squared difference between the signal and its version shifted at a lag 

of t. This is accomplished by summing up the squared differences between 

corresponding samples of the signal.  
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𝑑(𝑡) = Σ[s(n) − 𝑠(𝑛 − 𝑡)]^2 

 

Subsequently, the cumulative mean normalized difference function is calculated by 

dividing each value of the difference function by the cumulative sum of the squared 

difference function. This stage normalizes the difference function, thus facilitating error 

reduction. 

𝑑*(𝑡) = 𝑑(𝑡)/Σd(k) 

 

Next, an absolute threshold, 𝜏, is computed to establish the existence of a pitch period. 

This threshold is a fraction (a) of a total number of samples when the cumulative sum of 

the squared difference is divided.  

 

𝜏 = 	𝛼 ∗ Σd(𝑘)/	𝑇 

 

The algorithm then locates the first value in the cumulative mean normalized difference 

function that falls below the threshold. This value determines the estimated period. 

To achieve a more precise estimation, the algorithm utilizes parabolic interpolation to 

refine the estimated period. 

 

Table 2 presents a comprehensive overview of the advantages and disadvantages, as 

well as the different areas and usage of the YIN. 

 

 

Fields and applications Advantages Disadvantages 

The algorithm's low latency 

makes it suitable for use in 

interactive systems.  

 

Additionally, it shows 

promise in managing 

polyphony, a frequent 

occurrence in music 

compositions. 

 

Broad frequency range: 

The YIN method is 

beneficial for musical 

applications in which the 

fundamental frequency 

(F0) can exceed high 

limits. This is because YIN 

does not necessitate upper 

limits in F0 search bounds, 

unlike other techniques. 

 

One of the primary 

disadvantage of this 

method is its tendency to 

fail for F0s above one 

quarter of the sampling 

rate. As a result, its 

suitability for specific 

applications with extremely 

high F0s may be limited. 
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YIN's confidence measure 

enables efficient down-

sampling, making it 

valuable for saving storage 

space, like in the MPEG7 

standard. 

 

Moreover, it is versatile; it 

can be adapted to manage 

different forms of 

aperiodicity in specific 

applications. 

Robustness: YIN is robust 

because it maintains 

relatively low error rates 

over a broad search range. 

YIN is highly flexible. 

 

Flexibility: The algorithm 

has the capacity to be 

extended in various ways 

to manage different types 

of aperiodicity experienced 

in specific applications, 

since it is founded on a 

periodic signal model. 

 

The potential of real-time 

applications is noteworthy; 

YIN is particularly suitable 

for interactive or live 

systems owing to its low 

latency. 

 

Its straightforwardness is 

notable; the algorithm 

demands relatively few 

parameters which require 

adjustment, resulting in 

comparative simplicity. 

Additionally, while YIN can 

be expanded to address 

polyphony, this function 

has not undergone 

extensive testing. 

Therefore, its efficacy in 

managing polyphonic 

signals has not been fully 

established. 

 

Additionally, the algorithm 

includes a confidence 

measure for efficient down-

sampling, however, this 

feature relies on accurate 

estimates to avoid 

potential errors.  

 

Furthermore, although YIN 

can be expanded to 

accommodate different 

forms of aperiodicity, none 

of these extensions yielded 

improvements in the error 

rates observed in the 

speech databases 

examined in this study. 

This implies that the 

algorithm may be 

inadequate in scenarios 

where the signal 

consistently strays from 

the periodic model. 
Table 2: Fields, applications, advantages, and disadvantages of YIN 
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3.1.3 Harmonic Product Spectrum 
 

In this section, the discussion on Harmonic Product Spectrum is primarily based on the 

work of (Cf. Sripriya and Nagarajan, 2013). 

 

Another method for detecting pitch is the Harmonic Product Spectrum (HPS), an audio 

processing technique that determines the fundamental frequency of an audio signal. This 

method is particularly useful for signals that contain harmonic components, such as 

those produced by musical notes or tonal sounds. Technical terms such as HPS will be 

explained when first used to ensure comprehension. 

 

N. Sripriya and T. Nagarajan from the Department of Information Technology at SSN 

College of Engineering in Chennai, India, proposed a robust framework to estimate pitch 

using the HPS, obtained from the discrete Cosine Transform (DCT) of the signal, which 

is a mathematical technique for signal processing, in particular, data compression and 

spectral analysis. Herewith DCT is applied to the audio signal to obtain the frequency 

spectrum and then HPS algorithm is applied for the pitch detection. The motivation to 

use DCT was that: 

 

“DCT decorrelates the signal well in the transform domain. Due to this, the peaks 

corresponding to the fundamental frequency and the higher harmonics are 

relatively sharper and greater in amplitude.” 

 

The formula for Harmonic Product Spectrum consists of: 

 

𝛾(𝜔) =C|χ(𝜔𝑟)|
+

,(&

 

 

In the given equation, χ(ωr) represents the signal spectrum at the rth harmonic frequency 

ωr. The product ∏_(r=1) ^R|χ(ωr) | calculates the magnitudes of the spectrum at each 

harmonic frequency. The HPS algorithm utilizes either DFT (Discrete Fourier Transform) 

or DCT to obtain the frequency spectrum of the audio signal, which is subsequently 

downsized by eliminating every nth sample (n is a positive integer above 1). The smaller 

spectrum is then examined by the HPS algorithm for more processing. The downsizing 

is carried out to concentrate on the harmonics of the signal. 
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The HPS is determined by multiplying the initial spectrum and the downscaled spectra 

at every harmonic frequency. The product of all harmonics up to a certain maximum 

value R is calculated. The resulting HPS represents the harmony of harmonics in the 

signal. The highest value of the HPS across all frequencies is commonly utilized to 

approximate the fundamental frequency of the signal. 

Table 3 presents a comprehensive overview of the advantages and disadvantages, as 

well as the different areas and usage of the HPS. 

 

Fields and Applications Advantage Disadvantage 
Speech processing: 

Harmonic product 

spectrum (HPS) is 

frequently utilized to 

estimate pitch in speech 

processing applications, 

such as speech coding, 

speech recognition, and 

speaker recognition tasks. 

 

Music analysis: HPS can 

be applied to music signals 

for tasks such as melody 

extraction, instrument 

recognition, and pitch 

tracking. 

 

Acoustic analysis: HPS 

can be employed in 

acoustic analysis for tasks 

such as animal 

vocalization analysis, 

environmental sound 

classification, and sound 

event detection. 

Robustness to noise: HPS 

is recognized for its ability 

to maintain accuracy in 

noisy environments, 

making it appropriate for 

pitch estimation of speech 

signals that are severely 

degraded by noise. 

 

Accurate pitch estimation: 

HPS algorithm grants 

reliable estimation of the 

fundamental frequency of 

a signal, particularly when 

coupled with relevant 

preprocessing techniques. 

 

Straightforward 

implementation: HPS's 

implementation process 

presents relatively easy 

steps that contribute to the 

algorithm being 

computationally efficient 

and convenient for real-

time applications. 

 

One possible drawback 

that can be derived is the 

requirement for parameter 

tuning. The effectiveness 

of the suggested approach 

is susceptible to the choice 

of parameters, including 

the HPS order and the 

employed preprocessing 

techniques. 

 

Another potential 

downside could be the 

susceptibility of HPS to 

harmonics in the signal. 

Weak or poorly 

characterized harmonics 

may diminish the accuracy 

of pitch estimation. 

Table 3: Fields, applications, advantages, and disadvantages of HPS 
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3.1.4 Spectral Analysis 
 

In this section, the discussion on Spectral Analysis is primarily based on the book section 

“Spectral Analysis”, from the book “International Encyclopedia of the Social & Behavioral 

Science” (Cf. Rayner, 2001) and few information’s based on (Cf. Collimator, 2023). 

 

A statistical method for characterizing and examining sequenced data is spectral 

analysis. Sequential data are observations made in one, two, or three dimensions in 

space and/or time. Using this technique, observations from the data domain are 

transformed into the spectral domain by breaking down a sequence into oscillations of 

various lengths or scales. 

 

The process of Fourier analysis involves the calculation of the Fourier transform using 

the formula:  

𝐹(𝜔) 	= 	∫ 	𝑓(𝑡)	𝑒^(−𝑖𝜔𝑡)	𝑑𝑡 

 

Which measures the correlation between observations at distinct points in time. The 

autocovariance function, yy[p], is utilized for measuring the correlation between 

observations using the formula:  

 

𝛾(𝑘) 	= 	𝐸[(𝑋_𝑡	 − 	𝜇)(𝑋_(𝑡 + 𝑘) 	− 	𝜇)].	 

 

Nevertheless, in the paper it is observed that spectral estimates lack consistency, 

implying that they may not converge towards the true value as the number of 

observations escalates. 

Table 4 presents a comprehensive overview of the advantages and disadvantages, as 

well as the different areas and usage of the Spectral Analysis. 

 

Fields and Application Advantages Disadvantages 

Spectral analysis is 

essential for interpreting 

EEG and ECG signals, 

aiding in diagnosing 

neurological and 

cardiovascular disorders 

The process involves 

breaking down a sequence 

into oscillations of varying 

lengths or scales, 

converting data 

observations into the 

One significant limitation is 

that the observations must 

be equally spaced for the 

analysis to proceed 

smoothly. 
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like epilepsy. It is also 

applied in medical imaging. 

 
IT improves detection and 

processing in 

telecommunications, radar, 

and image processing by 

enhancing understanding 

of signal frequency and 

noise characteristics. 

 
Widely used in acoustics, 

spectral analysis provides 

data on resonant 

frequencies and modal 

properties of structures, 

enabling the optimization 

of design parameters for 

improved performance. 

 
By analyzing seismic 

signals, spectral analysis is 

pivotal in deducing 

subsurface details about 

the Earth, thereby 

benefiting oil and gas 

exploration, hazard 

mitigation, and earthquake 

prediction programmes. 

spectral domain for easier 

manipulation. 

 

The scales provided are 

crucial statistical 

descriptors of the data and 

may indicate significant 

factors that influence or 

generate it. 

 

Spectral analysis uses 

Fourier or Harmonic 

Analysis to manipulate 

periodic data, employing 

relevant statistics and a 

nonperiodic approach to 

spectral analysis. 

 

Higher order spectra, or 

polyspectra, offer valuable 

insights for complex 

distributions requiring 

higher statistical moments 

and products. 

Since spectral estimates 

are frequently inconsistent, 

as the number of 

observations rises, the 

estimates may not always 

converge to the true value. 

 

As a result of these 

numbers' lack of 

independence, spectral 

analysis's autocovariance 

function is difficult to 

interpret. 

 

The traditional method of 

spectral analysis makes 

the potentially unreal 

assumption that the 

unseen data is zero and 

the series ends have been 

smoothed off. 

 

Alternative strategies, 

which are covered in a lot 

of literature, call for more 

sophisticated methods like 

autoregression, moving 

averages, and maximum 

entropy techniques. 
Table 4: Fields, applications, advantages, and disadvantages of spectral Analysis 

 

3.1.5 Fast Fourier Transform 
 

In this section, the discussion on Fast Fourier Transform is primarily based on the work 

of (Cooley and Tukey, 1965) and (Bergland, 1969). They explored the applications and 

algorithms of the Fast Fourier Transform in signal processing. 
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The FFT algorithm is commonly used for calculating the DFT of a signal or sequence. 

This algorithm, which was initially introduced by James W Cooley and John W Tukey in 

their paper "An Algorithm for the Machine Calculation of Complex Fourier Series", has 

transformed the digital processing of waveforms by reducing the time and cost required 

for computing a DFT. The basic concept behind the Fast Fourier Transform (FFT) 

algorithm is to break down the computation of the Discrete Fourier Transform (DFT) of a 

sequence with a length of N into two smaller DFTs with a length of N/2. This process is 

then repeated recursively until the sequence length is reduced to 1. The smaller DFT 

results are then combined to produce the DFT of the original sequence. 

 

The formula for the Fast Fourier Transform (FFT) is as follows:  

 

𝑋(𝑘) 	= 	𝛴[0	𝑡𝑜	𝑁 − 1]	𝑥(𝑛) 	∗ 	𝑒𝑥𝑝(−2𝜋𝑖	 ∗ 	𝑘	 ∗ 	𝑛	/	𝑁) 

 

Where X(k) stands for the intricate Fourier coefficient at frequency bin k, x(n) represents 

the input sequence or signal, N denotes the amount of data points, and i signifies the 

imaginary unit.  

 

 

Table 5 presents a comprehensive overview of the advantages and disadvantages, as 

well as the different areas and usage of the FFT. 

 

 

Fields and Application Advantages Disadvantages 

Fast Fourier Transform 

(FFT) is utilized for the 

manipulation and 

transformation of different 

aspects of a digital signal in 

digital signal processing.  

 

The usage of FFT 

techniques helps in 

estimating the power 

distribution of a signal 

across its frequency range 

Efficiency and Speed: The 

FFT algorithm can 

considerably decrease the 

time required to find a 

Discrete Fourier Transform 

(DFT) from numerous 

minutes to less than one 

second. 

 

Cost-Effective: The use of 

FFT can also decrease 

computing a DFT cost from 

Understanding the 

Algorithm: Issues can arise 

from an insufficient or 

erroneous comprehension 

of the FFT algorithm. 

 

Value Restrictions: A few 

FFT programs have 

constrained values of N 

that ought to be powers of 

two. 
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in power spectrum 

estimation, which is an 

important method in signal 

processing. 

 

The application of FFT 

hardware implementations 

in the field of audio and 

electroacoustics is 

widespread. 

 

Fast Fourier Transform 

(FFT) is applied in real-

time digital spectrum 

analysis, involving the real-

time analysis of a 

spectrum. 

 

FFT is utilised in the 

convolution of series, 

which is a mathematical 

procedure applied to two 

functions to create a third 

function. 

 

FFT is utilised in the 

analysis of waveforms and 

spectra in both the time 

domain and frequency 

domain, as part of 

waveform and spectrum 

analysis. 

several dollars to several 

cents. 

Versatility is another 

advantageous feature of 

this algorithm. The Fast 

Fourier Transform (FFT) 

algorithm is employed 

across various fields, 

including digital filtering, 

estimation of power 

spectra, and real-time 

analysis of digital spectra. 

Contrasts from Continuous 

Fourier Transform: While 

the majority of properties 

seen in the continuous 

Fourier Transform are 

preserved, certain 

distinctions arise due to the 

restriction that the DFT 

must operate on sampled 

waveforms that are defined 

within finite intervals. 

Table 5: Fields, applications, advantages, and disadvantages of FFT 
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3.1.6 Mel Frequency Cepstral Coefficients 
 

In this section, the discussion on Mel Frequency Cepstral Coefficients is primarily based 

on the work of (Cf. Zheng et al., 2001). 

 

MFCCs, or Mel-Frequency Cepstral Coefficients, are a prevalent technique for extracting 

features in speech recognition systems. It is a precise method that holds significant 

importance in speech recognition technology. The process begins with taking the 

discrete Fourier transform (DFT) of a speech signal's short-term power spectrum. This 

is followed by warping it on a mel-frequency scale and transforming it into the cepstral 

domain using a cosine transform. The MFCCs capture the spectral characteristics of the 

speech signal and are often included as input features in speech recognition algorithms. 

 

The calculation of Mel-frequency cepstral coefficients (MFCC) undergoes various 

stages:  

Speech signals are divided into short frames, typically lasting 20-40 milliseconds, with a 

small overlap between adjacent frames. Each frame is multiplied by a window function 

to reduce spectral leakage. The Discrete Fourier Transform (DFT) is used to obtain the 

power spectrum, which is filtered through a group of evenly spaced filters organized on 

the Mel-frequency scale.  

 

The logarithm is applied to convert filter bank energies to the logarithmic scale, which 

represents loudness according to human perception. The Discrete Cosine Transform 

(DCT) is applied to logarithmic filter bank energies to obtain cepstral coefficients, which 

decorrelate filter bank energies and reduce the feature vector's dimensionality. The 0th 

coefficient, representing the overall energy of the frame, is excluded. 

 

The calculation of MFCC can be summarized using the following formula: 

 

MFCC = DCT (log (Filterbank (Power Spectrum))) 

 

Table 6 presents a comprehensive overview of the advantages and disadvantages, as 

well as the different areas and usage of the MFCC. 
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Fields and Applications Advantages Disadvantages 

Mel Frequency Cepstral 

Coefficients (MFCCs) are 

commonly used as input 

features in automatic 

speech recognition (ASR) 

systems, aiding in the 

modelling and 

identification of speech 

sounds. 

 

Speaker recognition tasks 

also utilise MFCCs to 

extract speaker-specific 

features for identifying or 

verifying a speaker's 

identity. 

 

In music information 

retrieval, MFCCs can also 

be applied. MFCCs have 

been utilised in various 

music information retrieval 

tasks, including genre 

classification, music 

recommendation, and 

audio similarity analysis. 

 

Mel-frequency cepstral 

coefficients (MFCCs) are 

modelled after the human 

auditory system, making 

them less susceptible to 

background noise and 

other distortions in the 

speech signal. 

 

By utilizing discrete cosine 

transform (DCT) to reduce 

the dimensionality of the 

feature vector, MFCCs 

provide a concise account 

of the speech signal's 

spectral characteristics. 

 

MFCCs capture crucial 

spectral characteristics of 

speech, including formants 

and phonetic information, 

thus proving to be efficient 

for speech recognition 

tasks. 

 

Additionally, MFCC 

calculations involve simple 

mathematical operations 

such as Fourier transforms 

and DCT, resulting in 

computational efficiency. 

 Lack of temporal 

information: Mel-frequency 

cepstral coefficients 

(MFCCs) are computed 

based on brief speech 

frames, usually lasting 20-

40 milliseconds. Therefore, 

MFCCs cannot solely 

capture temporal 

information beyond the 

frame level. 

 

Sensitivity to speaker 

variability: The 

effectiveness of MFCCs 

may be adversely 

influenced by variations in 

speaker characteristics 

such as accent or gender, 

as MFCCs principally 

capture spectral 

information. 

Table 6: Fields, applications, advantages, and disadvantages of MFCCs 
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3.2 Autocorrelation Function  
 

In this section, the discussion on Autocorrelation Function is primarily based on the work 

of (Cf. Kale and Limaye, 2014), (Cf. Skjei, 2011 ), (Cf. Rabiner, 1977) and (Cf. Indeed 

Editorial team, 2023). 

 

Autocorrelation involves comparing a signal with itself to determine the similarity between 

observations, considering the time gap between them. This mathematical technique is 

used in signal processing to identify patterns that are repeated, such as periodic signals, 

even if obscured by noise or in the absence of a fundamental frequency in a signal. Pitch 

and tempo detection are significant applications of autocorrelation because it provides a 

measure of similarity between a signal and itself at a given lag. 

 

The procedure entails assessing a reference window against a delayed window, with the 

reference window situated at the global maximum, which occurs at "lag 0". As the signal 

proceeds, the correlation declines, but in periodic signals, it will rise again and reach a 

local maximum. The interval between "lag 0" and the initial peak provides an 

approximation of the pitch/tempo. 
 

 

The similarity can be calculated by adding up the products of the signal, Xj, and its lagged 

version, Xj + t : 

𝑟-	(𝜏) = 	 ( 𝑋/

-01%&

/(2

𝑋/0	" 

 

Figure 3: An original signal and a lagged copy of itself adapted from Real-Time Fundamental 
Frequency Estimation Algorithm for Disconnected Speech, source: (Skjei, 2011 ) 
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The autocorrelation function at time t and lag τ is represented by rt(τ). This function 

measures how similar a signal is to a time-delayed version of itself. The formula ∑(j=x) 

^(t+W-1) requires adding up the values of variable j, which varies from x to  

t+W-1. Xj is the value of a discrete-time signal X at time j, while Xj+τ is the time-shifted 

version of the same signal evaluated at time j+τ. τ represents the lag, signifying the time 

delay between the original signal and the time-shifted version. 

 

The lag range, where r(τ) is the fundamental frequency period and SR is the sampling 

rate, represents the frequency search range, which is defined by the maximum and 

minimum frequencies (fmax and fmin). 

 

In the context of a random process X(t), the autocorrelation function (ACF) is defined as 

the expected value of the product of two random variables, X1 =X(t1) and X2 = X(t2), taken 

at times t1 and t2 respectively. The mathematical representation of the ACF is given by: 

 

𝑅22(𝑡&𝑡3) = 𝐸	V𝑋(-!)𝑋(-")W 

 

Where t2 is a delayed version of t1 by an amount t . In other words:  

t2 = t1 + t 

 

𝑅22(𝑡, 𝑡 + 	𝜏) = 	𝑅22(𝜏) = 𝐸[𝑋(𝑡)	𝑋(𝑡 + 	𝜏)] 

 

Autocorrelation functions find use in several industries, including physics, engineering, 

meteorology, finance, health, and medicine. In the field of physics, they help scientists to 

measure and comprehend patterns in sound waves and light and sonic concepts, such 

as pitch, frequency, and tempo. Meteorologists use them to predict alterations in future 

weather conditions based on historical data patterns and assess the impact of variables 

on these trends. Autocorrelation functions are employed in finance to appraise stock 

values over time and make future predictions. 

 

Additionally, medical imaging software in health and medicine, such as ultrasound 

imaging, utilizes these functions to generate visual representations of blood flow in 

patients. In epidemiology, they pinpoint trends in disease outbreaks over time, aiding the 

comprehension of patterns and the development of strategies to reduce or eradicate their 

impact on susceptible communities. Overall, autocorrelation functions are a crucial 

means of comprehending and forecasting future events within numerous industries. 
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The autocorrelation pitch detector is still one of the most robust and dependable 

approaches for pitch detection, even though many other approaches have been 

developed. For a variety of reasons, autocorrelation techniques have been quite 

successful at identifying pitch. The autocorrelation computation is a reasonably 

straightforward but time-consuming procedure that is carried out directly on the 

waveform. The autocorrelation computation is simple to implement in digital hardware, 

using only an accumulator and multiplier as computational elements, even though it 

requires high processing speeds. This computation is also essentially phase insensitive. 

As a result, this method works well for identifying speech that has been corrupted during 

transmission or that has been transmitted across a phone line. 

 

However, there are several problems associated with this method, such as deciding 

which autocorrelation peaks correspond to the pitch period and the need for a window 

for computing the short-term autocorrelation function. The choice of a window and the 

effect of the window on the autocorrelation function's smooth tapering to 0 as the 

autocorrelation index increases, further complicate the problem. Formant peaks in the 

autocorrelation function, which occur at lower indices than the pitch period peak, tend to 

be of greater magnitude than the pitch period peak. 

 

 

3.3 Parabolic Interpolation 
 

In this section, the discussion on Parabolic Interpolation is primarily based on the work 

of (Vandebogert, 2017).  

 

Parabolic interpolation is a mathematical method employed to approximate a curve or 

function that accurately matches a set of three defined data points. This technique is a 

type of polynomial interpolation, that customarily fits a parabolic (quadratic) function to 

the provided data. Its application is particularly practical when dealing with limited data 

points and when trying to estimate values within them by using a parabolic curve. 

The general form of a parabolic function is:  

 

𝑓(𝑥) 	= 	𝑎𝑥2	 + 	𝑏𝑥	 + 	𝑐 

 

In equation, f(x) represents the estimated function or curve, and a, b, and c coefficients 

need to be determined. To conduct parabolic interpolation, a set of three unique data 
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points is required. Each point must feature a known x and y value, and are labelled as 

such: (x1, y1), (x2, y2), and (x3, y3). The objective is to determine the coefficients a,   

 b, and c, which can result in a well-fitting parabolic equation for the given data points. 

This can be achieved by establishing a system of three equations with the data points:  

 

𝑦1	 = 	𝑎𝑥21	 + 	𝑏𝑥1	 + 𝑐	

𝑦2	 = 	𝑎𝑥22	 + 	𝑏𝑥2	 + 𝑐	

𝑦3	 = 	𝑎𝑥23	 + 	𝑏𝑥3	 + 𝑐	

 

Solving the system of equations will provide the values of a, b, and c, which define the 

parabolic function that passes through the given data points. Once the coefficients have 

been determined, the parabolic function f(x)=ax2+bx+c can be utilized to approximate y 

values for any x falling within the range established by the data points. This constitutes 

the core principle of interpolation, whereby the approximated parabolic curve is 

employed to infer values between the data points. 

 

The precision of parabolic interpolation relies on the suitability of a parabolic curve to 

approximate the data underneath. It performs optimally when the data points 

demonstrate a parabolic trend. However, its level of accuracy may decrease when the 

underlying behavior is more complicated. 

 

 

3.4 Evaluation 
 

In this thesis work, the choice was to utilize the autocorrelation function and 

autocorrelation function paired with parabolic interpolation. Autocorrelation 

demonstrates its effectiveness in identifying pitch, particularly in noisy environments. It 

proficiently detects cyclic patterns in signals that may be distorted or jumbled. The 

simplicity of ACF makes it well-suited for real-time applications and hardware setups.  

 

Incorporating parabolic interpolation provides a precise method for identifying the highest 

peak in the autocorrelation function. This precision is vital for accurately estimating the 

fundamental frequency. The quadratic fit utilized in parabolic interpolation ensures a 

smoother and more precise representation of the data, especially when dealing with a 

restricted number of data points. This combination combines the robustness of 

autocorrelation with advanced precision in peak estimation. The aforementioned 
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collaboration proves advantageous in situations where precision is paramount, 

particularly in noisy environments.  

 

Moreover, regarding the mentioned algorithms, the autocorrelation function and 

autocorrelation function combined with parabolic interpolation offer practical options for 

the thesis. To balance accuracy and simplicity while considering the restrictions of time 

and resources, selecting the most appropriate method is crucial. These two pitch 

detection algorithms strike a practical balance, providing meaningful results within the 

constraints given. 

 

Only these two pitch detection algorithms have been implemented in the current project 

due to limitations in time and resources. Nonetheless, the plan is to include the rest of 

the pitch detection algorithms in the future. 
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4 Implementation 
 

The goal of this section is to highlight how the implementation phase of the project went.  

The project focused on only two different pitch detection algorithms among other various 

types of pitch detection algorithm. (See Chapter 3)  

 

4.1 Autocorrelation Function Algorithm 
 

The subsequent code is intended to execute pitch detection by utilizing autocorrelation. 

Pitch detection is a crucial job in audio processing, applicable to various fields, including 

music and speech recognition. Autocorrelation helps identify periodic patterns in the 

audio signal that can be connected to pitch frequency (Cf. Kale and Limaye, 2014). 

 

 

This code initializes the ‘AudioContext’ with a sample rate of 44100 Hz, a widely used 

sample rate for audio processing. The sample rate establishes the number of audio 

samples that are processed per second. Higher sample rates result in superior audio 

quality but demand more computing resources.  

 

 

An empty buffer called ‘myArrayBuffer’ is initialized, with a value of ‘2’ indicating that it 

is a stereo buffer, featuring two channels (left and right). The buffer’s complete size is 

determined by the second parameter, ‘audioCtx.sampleRate * 3 * 2’. In order to 

construct a 3 – second buffer, the sample rate is multiplied by 3, ascertaining the quantity 

of samples within that period. An added multiplication by 2 is performed to account for 

Code Snippet 1: Initializing the audio context 

Code Snippet 2: Creating an empty Audio Buffer 
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stereo channels, effectively creating 6 seconds of audio data (3 seconds for each 

individual channel). The buffer’s sample rate is specified by the final argument, 

‘audioCtx.sampleRate’, which is set to 44100 Hz to align it with the audio context’s 

sample rate. Within this code section, a buffer source node is produced and then linked 

to the audio destination within an AudioContext. 

 

 

The above given code snippet commences by producing an ‘AudioContext’ instance, 

‘audioCtx’, which is essential for web applications that involve audio. It serves as the 

core object that manages audio operations. ‘audioCtx.createBufferSource()’ is utilized 

to generate a buffer source node named ‘source’. It deos not produce sound by itself 

but rather plays preloaded audio from an AudioBuffer. The AudioBuffer ‘myArrayBuffer’ 
should exclusively contain the raw audio data that requires playing. This audio buffer 

must be assigned to the source’s ‘buffer’ property so that it associates directly with the 

source node.  

 

To commence the playback, one needs to execute the ‘start ()’ function on the source 

node. This function triggers the commencement of the audio signal playback saved in 

the ‘myArrayBuffer’. The audio signal is then processed, played through the audio 

context, and directed to the output destination.  

 

 

In this section of code, the implementation for calculating the autocorrelation of an audio 

signal is explained step by step: 

 

Code Snippet 3: Converting Audio Signal to time domain waveform. 
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The computeAutocorrelation procedure accepts a single parameter, waveform, which 

should be a Float32Array. This array denotes the signal input for the autocorrelation 

computation. A new Float32Array named acf is instantiated within the method to store 

the autocorrelation values. This array denotes the signal input for the autocorrelation 

computation. This array's size is equivalent to the input waveform. 
 

The maximum lag value for calculating autocorrelation is determined by setting the 

variable maxLag to the length of the waveform. Since autocorrelation cannot be 

computed for lags exceeding the signal length, the maximum lag is equal to the signal 

length. The function then enters a loop, iterating through various lag values, starting from 

0 and going up to maxLag - 1. Within the loop, the variable sum is initialized to zero. 

This value accumulates the autocorrelation value at the current lag. Autocorrelation at 

the current lag is calculated using a nested loop that iterates through the waveform array, 

considering time shifts or lags. At each time shift, corresponding samples at different 

times are multiplied, and their sum is added to the total. This method calculates the inner 

product of the signal with a time-shifted version of itself, which is a fundamental step in 

autocorrelation. 

 

After the inner loop is finished, the calculated autocorrelation value for the current lag is 

saved in the acf array at the corresponding lag index. The outer loop proceeds until all 

lags are evaluated, and the autocorrelation values are computed for each lag. Ultimately, 

Code Snippet 4: Computing Autocorrelation 
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the function yields the acf array, which comprises the calculated autocorrelation values. 

These values indicate the degree of similarity between the signal and its time-shifted 

versions at different lags, offering essential information for various signal processing 

tasks. 

 

The above code segment demonstrates the calculation of autocorrelation for an audio 

signal by comparing the signal with itself at various time offsets (lags). The result is an 

array (acf) that holds autocorrelation values, which can reveal periodic patterns or 

frequencies present in the audio signal. 

 

The Autocorrelation Function (ACF) may be expressed mathematically as follows: 

 

𝐴𝐶𝐹[𝑙𝑎𝑔] = 	((𝑥	[𝑖] ∗ 𝑥	[𝑖 + 𝑙𝑎𝑔]) 

Whereas:  

• At a given lag value, the autocorrelation is represented as ACF [lag]. 

• The signal value at time index i is represented by x[i]. 

• The signal value at time index i + lag is expressed as x [i +lag], where “lag” is the 

time shift. 

• The total over all appropriate value of i is shown by å . 

 

The ACF formula adds up the product of corresponding signal values at different time 

indices to get the autocorrelation over a range of time delays(lags). It measures how 

similar two signals are to one another at various time delays when they are time-shifted. 

 

 

In this code section given below, the implementation for finding the peak of the 

autocorrelation is explained in detail:  
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The function findPitch has two parameters, acf (an array of autocorrelation values) and 

sampleRate (the audio signal's sample rate). The code sets minimum and maximum 

periods for pitch detection based on the sampleRate, determining the frequency range 

within which pitch will be detected. The minimum period is 4 kHz, while the maximum 

period is 70 Hz. To track the peak in the autocorrelation function with the highest value, 

the code initializes two variables: maxIndex and maxValue, which store the index and 

the value of this peak. These variables are updated during the code's search for the 

peak. 

 

The code proceeds to enter a loop, iterating through the autocorrelation values within 

the range of minPeriod and maxPeriod, ultimately attempting to locate the index with 

the highest autocorrelation value, denoting the detected pitch. The loop compares the 

present autocorrelation value (acf[i]) with the highest value discovered thus far 

(maxValue). If the current value exceeds the maximum, it updates maxValue and 

maxIndex to the new values. The code records data regarding the detected pitch, such 

Code Snippet 5: Finding the peak of ACF. 
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as the sampling rate, the index of the highest peak (maxIndex), the amplitude of the 

peak (acf[maxIndex]), and the calculated frequency (sampleRate / maxIndex). These 

recordings can be beneficial for debugging and analysis. The function identifies the peak 

in autocorrelation values and calculates the corresponding frequency, which is returned 

as the detected pitch. Overall, the function provides valuable data without subjective 

evaluations or complex descriptions. 

 

The findPitch function analyses autocorrelation values to detect the pitch of an audio 

signal within a specific frequency range. The function identifies the peak in 

autocorrelation values and calculates the corresponding frequency, which is returned as 

the detected pitch. This information is useful for tasks such as pitch detection in audio 

processing applications. 

 

 

4.2 Autocorrelation Function Algorithm combined with Parabolic 
Interpolation 

 

The following code is designed to perform pitch detection using autocorrelation combined 

with Parabolic interpolation.  

 

 

The autocorrelation function is utilized to determine the autocorrelation of an input signal 

by operating on a waveform, which is a Float32Array containing the audio or signal data. 

Code Snippet 6: Calculate Autocorrelation 
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A new Float32Array, named acf, is generated to store the calculated autocorrelation 

values. It is initially set to zero and has the same length as the input waveform. The acf 

array is employed to contain the autocorrelation values for different time lags. The length 

of the input wave is acquired and recorded in the N variable, representing the number of 

samples present within the signal.  

 

A loop is executed by the code that iterates through various time delays. The lag variable 

signifies the time lag and ranges from 0 to N. The code computes autocorrelation by 

summing the product of signal values present at diverse time instances, while accounting 

for time delays for each respective delay time. The sum variable is initialized to zero 

within the inner loop. This variable aggregates the sum of products for the designated 

time delay.  

 

The nested loop traverses the waveform array, considering the time delay. It determines 

the product of the signal values at time i and time i + delay, accumulating these products 

in the sum variable. When the inner loop is finished, the calculated autocorrelation value 

for the current delay is deposited in the acf array at the corresponding delay index. The 

algorithm loops until all time lags are evaluated and computes the autocorrelation values 

for various lags. The resulting acf array includes the autocorrelation values, which 

illustrate the signal's similarities to time-shifted versions of itself at different lags. 

 

In brief, the autocorrelation function computes the autocorrelation of an input signal by 

iterating through various time lags and calculating the sum of products for each lag. The 

obtained autocorrelation values are useful for different signal processing applications, 

such as pitch detection and periodic pattern analysis. 

 

The findMaxIndexInRange function has been created to locate the maximum value's 

index within a particular range in an input Float32Array. It can prove to be valuable in 

multiple signals processing jobs, ranging from identifying peaks to determining dominant 

frequencies within a defined frequency range. Below is a comprehensive code 

explanation: 
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The function findMaxIndexInRange accepts the subsequent parameters: 

Array, which is a Float32Array used for searching the maximum value within a specific 

range, minFrequency, representing the lowest frequency of interest in the designated 

range, maxFrequency, signifying the highest frequency of interest in the assigned range, 

and sampleRate, which is used in the computation of lag values corresponding to the 

stated frequencies. Two variables, maxIndex and maxValue, are initially assigned values. 

maxIndex is given the default value of -1, indicating that no peak has been detected in 

the specified range. Technical term abbreviations are explained when first used. 

 

Meanwhile, maxValue is initially set to 0. The program calculates the lag index in the 

array based on the specific minimum and maximum frequencies, considering the 

sampleRate. The minimum frequency corresponds to the minimum lag. These values 

represent the calculated lag values within specified frequency range. 

 

Subsequently, the function initiates a loop, iterating through the array within the range of 

lags between the minimum and maximum values. 

 

Code Snippet 7: Function to Find Index of Maximum Value in Range 
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The code comprises a loop that constantly compares the value at a specific index in an 

array with the current maximum value. The current highest value is saved in the 

“maxValue” variable. If the value at index “i” is greater than the current “maxValue”, the 

code updates the “maxValue” variable with the new highest value and records the index 

“i” as the new “maxIndex”. Throughout each iteration of the loop, this comparison and 

updating process continually occurs. If the code identifies a higher value, it replaces the 

previous maximum value with this new one and updates the corresponding “maxIndex” 

variable. 

 

Code Snippet 8: ACF Pitch Detection with Parabolic Interpolation  
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After iterating through the specified range, the function returns the "maxIndex," which is 

the index of the maximum value within the specified frequency range. If no peak is found 

within the range, "maxIndex" remains -1. 

 

To summarise, the findMaxIndexInRange function is utilised to seek the index of the 

highest value in a designated frequency range contained within an input array. It 

determines the lag values for the designated frequencies and proceeds to traverse 

through the array within the specified range with the objective of locating the maximum 

value's index. This is beneficial for activities such as signal processing which require 

frequency peak identification. 

 

The acfPitchDetection function has been specifically developed to estimate the 

fundamental frequency (pitch) of an audio signal. The code processes audio data 

represented as a Float32Array, along with the sample rate information. It computes the 

autocorrelation values of the audio data using an autocorrelation function, which returns 

the values in array named “acf”. These values are used later in the code to determine 

the pitch of the audio signal. Additionally, the function outlines a specific frequency range 

that it expects the fundamental frequency to be confined to. The minimum and maximum 

frequencies of interest, in Hz, are represented by the minFrequency and maxFrequency 

values. 

 

The findMaxIndexInRange function is called by the function to determine the index of the 

maximum peak in the autocorrelation array within the specified frequency range. If no 

peak is found within this range, a default maxIndex of 1 is assigned. To estimate a more 

accurate index, parabolic interpolation is performed around the maximum peak. This 

method of interpolation considers the values of the peak being analysed and those of its 

neighbouring values. It calculates the interpolated index to define the period of the signal 

in samples. The distance between the maximum point and any of its neighboring points 

is represented by the numerator (0.5*(prevPeak−nextPeak)). The denominator, which is 

(prevPeak−2*currentPeak+nextPeak), is associated with the parabolic curve's curvature. 

The interpolated index is obtained by multiplying this fraction by the maximum point index 

(maxIndex). 

 

The Parabolic Interpolation may be expressed mathematically as follows: 

 

f(x) 	= 	ax2	 + 	bx	 + 	c	 
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whereas: 

• F(x) corresponds to the “interpolatedIndex”. 

• X corresponds to the “maxIndex”. 

• The coefficients a, b, and c are not explicitly represented in the code, but they 

are implicitly captured in the values of “prevPeak”, “currentPeak”, and “nextPeak”. 

 

Subsequently, the function calculates the frequency in Hz by dividing the sample rate by 

the interpolated period. The results, which incorporate the maximum index, amplitude 

(peak value), and estimated frequency, are recorded for debugging and analysis 

purposes. Ultimately, the estimated fundamental frequency (pitch) is returned as the 

outcome of the function. 

 

In brief, the acfPitchDetection algorithm approximates the pitch of an audio signal 

through autocorrelation computation, finding the highest peak in a designated frequency 

range, and employing parabolic interpolation to boost accuracy. This technique is 

frequently implemented in speech recognition and music analysis for pitch detection. 
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5 Results 
 

This section examines the methodology of collecting data and creating the experimental 

structure to analyze the frequency response of both implemented algorithms. 

Additionally, the implemented algorithms are compared with emphasis on their distinct 

characteristics and performance measures. 

 

5.1 Data Collection and Experimental Setup 
 

The process of gathering data for pitch detection algorithms is crucial in understanding 

their performance across a spectrum of frequencies. The experiments conducted for this 

study involved the implementation and evaluation of two pitch detection algorithms: 

Autocorrelation function and Autocorrelation with parabolic interpolation. 

 

Autocorrelation Function Algorithm: 
 

The idea behind the Autocorrelation function pitch detection algorithm is to identify 

periodicity in the signal. In order to simulate a variety of vocal pitches, sinusoidal waves 

spanning from 700 Hz to 2500 Hz were generated for the experimental setup. The 

synthetic signals were subsequently analyzed using the Autocorrelation Function 

algorithm to determine their corresponding frequencies. 

 

The figure 4 shows the outcomes of the autocorrelation function algorithm. The 

estimated frequency is presented in the “Measured Frequency”, while “Tested 

Frequency” displays the known frequency used in the synthetic signal. Frequencies of 

particular significance, namely 750 Hz, 1050 Hz, and 1400 Hz, were intentionally chosen 

to assess the algorithm’s proficiency across a spectrum of pitch levels. 

 

Autocorrelation with Parabolic Interpolation Algorithm: 
 

The second approach combines Autocorrelation with parabolic interpolation to overcome 

the limitations of the standalone Autocorrelation function. The goal of this hybrid strategy 

is to improve pitch recognition accuracy, particularly in situations when the 

autocorrelation function can have trouble. Synthetic signals were produced with 

frequencies ranging from 750 Hz to 2500 Hz, same like in the first method. After that, the 

signals were processed using the technique for autocorrelation with parabolic 
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interpolation. The results show the measured frequencies for the matching tested 

frequencies, as shown in the figure 5. 
 

The algorithms were developed in Typescript programming language, which is 

appropriate for signal analysis, and the experiments were carried out in a digital signal 

processing environment. To maximize each algorithm’s performance, parameters like 

windows strategies, interpolated parameters, and signal duration were carefully 

selected.  

 

The collected data were analyzed by comparing the measured frequencies with the 

known frequencies of the synthetic signals. This analysis involved calculating error 

metrics, such as mean absolute error and root mean square error, to quantify the 

accuracy and precision of each algorithm across the tested frequencies. In order to 

contribute to a thorough understanding of the performance characteristics of both pitch 

detection algorithms, the experimental setting sought to shed light on their advantages 

and disadvantages. 

 

5.2 Comparison of the Implemented Algorithms 
 

The Autocorrelation function and the Autocorrelation with parabolic interpolation pitch 

detection algorithms were evaluated based on their respective performance across 

various tested frequencies. The comparative analysis highlights the strengths and 

limitations of each approach. 

The Autocorrelation function algorithm is particularly effective at frequencies such as 750 

Hz and 1050 Hz, as evidenced by the accurate pitch detection of 700 Hz and 816.67 Hz, 

respectively. 
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Limitations in capturing certain pitch characteristics become apparent at 1050 Hz due to 

variations in measured frequencies such as 747.46 Hz and 773.68 Hz. While the 

algorithm demonstrates proficiency in some situations, it lacks precision, particularly at 

higher frequencies. The Mean Absolute Error (MAE) is 486.5281 and Root Mean Square 

Error (RMSE) is 616.2342. On average, ACF algorithm has an absolute pitch estimation 

error of approximately 486.5281 Hz. The RMSE suggests a higher dispersion of errors, 

with larger deviations from the true pitch frequencies. 

 

The aim of the Autocorrelation with parabolic interpolation technique is to overcome the 

limitations of relying solely on the Autocorrelation function. Notably, frequencies of 1150 

Hz and 800 Hz are significant. Results show that when tested at 800 Hz, the frequencies 

1349.02 Hz, 1182.79 Hz, and 1247.34 Hz have considerably enhanced accuracy 

compared to the Autocorrelation function alone. Similarly, the recorded frequencies at 

1150 Hz comprise 1164.58 Hz and 1423.26 Hz, indicating an increased ability to detect 

nuances in pitch. 

Figure 4: ACF Pitch Detection: Measured vs. Tested Frequency 
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Upon comparison of the two algorithms, it becomes evident that the Autocorrelation 

function with parabolic interpolation surpasses the standalone Autocorrelation function, 

particularly in challenging circumstances. The measured frequencies of 617.64 Hz and 

699.47 Hz provide evidence that the enhanced algorithm yields more precise 

measurements at a frequency of 750 Hz. Similarly, the method enhances accuracy at a 

frequency of 1050 Hz, with recorded frequencies of 1311.85 Hz and 1217.01 Hz. The 

Mean Absolute Error (MAE) is 375.1296 and Root Mean Square Error (RMSE) is 

451.0616. The MAE of 375.1296 indicates a lower average absolute error, suggesting a 

more accurate pitch estimation. The RMSE of 451.0616 further confirms a reduces 

overall error dispersion compared to the ACF algorithm alone. 

 

It is crucial to note that both algorithms have advantages and disadvantages dependent 

on the frequency evaluated. Although the Autocorrelation function operates effectively in 

certain contexts, it has limitations in others, especially when frequencies are high. 

Although the combined approach surpasses the individual function, it could still face 

problems during pitch identification that demands accuracy. 

 

The Autocorrelation with parabolic interpolation technique performs better than the 

standalone Autocorrelation function, as per the examination of the utilized pitch detection 

algorithms. Additionally, the accuracy of the improved algorithm is enhanced, particularly 

in challenging frequency ranges. To select the optimum method for a specific application, 

one must comprehend the singular advantages and disadvantages of each algorithm. 

Figure 5: ACF with Parabolic Interpolation Pitch Detection: Measured vs. Tested Frequency 
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6 Discussion  
 

The presented result showcases the outcomes of two distinct pitch detection algorithms 

(see Chapter 5). This section highlights the performance of the algorithms and their 

possible uses. 

 

Autocorrelation Function Algorithm: 
 

The Autocorrelation function algorithm, as evidenced by the figure 4, demonstrates 

varying degrees of accuracy across different tested frequencies. At lower frequencies, 

such as 750 Hz, the algorithm performs relatively well, accurately estimating the pitch. 

However, dissimilarity emerge as the frequency increases, with instances like 1050 Hz 

displaying larger errors. The algorithm's struggle at higher frequencies might be 

attributed to challenges in identifying periodicity in shorter waveform cycles. 

Additionally, certain frequencies, such as 1150 Hz and 1600 Hz, exhibit significant 

deviations between the tested and measured frequencies. These dissimilarities could be 

influenced by harmonics, noise, or limitations inherent to the Autocorrelation function 

when faced with complex signal structures. 

 

Autocorrelation with Parabolic Interpolation Algorithm: 
 

The second figure (Figure 5) introduces results from the Autocorrelation function 

combined with parabolic interpolation, showcasing a refined approach to pitch detection. 

The integration of parabolic interpolation aims to address the limitations observed in the 

standalone Autocorrelation function. Notably, the hybrid algorithm yields more accurate 

estimations across various frequencies. For instance, at 800 Hz, the measured 

frequencies are in close proximity to the tested values, indicating improved accuracy. 

The algorithm also exhibits enhanced performance at 1050 Hz and 1500 Hz, where the 

Autocorrelation function alone struggled. 

 

Comparative Analysis: 
 

When comparing the two algorithms, it is clear that the Autocorrelation function with 

parabolic interpolation is superior to its standalone equivalent in reducing errors 

associated to higher frequencies. The hybrid approach excels in capturing the nuanced 

characteristics of complex signals, leading to more accurate pitch estimations. It is 
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essential to acknowledge that both algorithms have their strengths and limitations. The 

Autocorrelation function, while simpler, might be enough for certain applications and 

lower frequency ranges. On the other hand, the hybrid algorithm proves advantageous 

when dealing with diverse and intricate audio signals, making it a valuable tool for 

applications in music, speech analysis, and sound processing. 

 

The choice between these algorithms depends on the specific requirements of the 

application. The Autocorrelation function, despite its limitations, remains a viable option 

in scenarios where simplicity is paramount. Meanwhile, the Autocorrelation function with 

parabolic interpolation emerges as a robust solution for tasks demanding higher 

accuracy, especially in complex audio environments. The findings of this study contribute 

to the broader discourse on pitch detection methodologies, offering valuable insights for 

researchers and practitioners in the field of digital signal processing. 
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7 Summary and Outlook 
This thesis explores different pitch detection algorithms. The Autocorrelation Function 

(ACF) and the hybrid Autocorrelation with Parabolic Interpolation algorithm are key focal 

points, each offering distinct approaches to pitch detection challenges. The 

Autocorrelation Function is efficient in lower frequencies and can detect periodic patterns 

in signals, making it suitable for real-time applications. However, it faces challenges at 

higher frequencies due to the intricacies of pitch detection in complex signal structures. 

 

The hybrid approach, incorporating Parabolic Interpolation, enhances accuracy in 

challenging and noisy environments, especially in the complexity in pitch detection. The 

quadratic fit used in parabolic interpolation ensures a smoother and more precise 

representation of data. The thesis's careful selection of these algorithms strikes a 

balance between accuracy and simplicity, considering time and resource constraints. 

 

The thesis aims to expand the horizon by including a wide range of pitch detection 

algorithms in the research, enriching the comparative analysis, and providing a 

comprehensive toolkit for speech therapists to address the diverse needs of individuals 

undergoing Logopedic Therapy. Collaboration with speech therapy experts is a 

promising way to integrate these algorithms into practical tools, potentially advancing the 

quality of life for those navigating speech and language impairments. 

 

As audio signal processing evolves, there is a scope to explore adaptive algorithms, real-

time processing enhancements, and machine learning techniques to refine pitch 

detection methodologies and tailor them to the dynamic and individualized requirements 

of speech therapy. This thesis serves as a valuable contribution to understanding pitch 

detection and as a catalyst for future research. 
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