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Abstract 

 

The present thesis delves into the implementation of a pipeline for segmenting 

histological images using machine learning. The intended purpose of the pipeline is to 

enable quick and reliable preparation of test data to be used in the training of machine 

learning models as well as the evaluation of the prepared data by fully trained models. 

The whole slide images used by such models generally require some manor of pre-

processing before they can be evaluated by a machine learning algorithm, thus this 

project aims to enable the researcher to complete all necessary steps by using the 

Pre-processed Image Preparator and Tiler (PIPET).  

Given an input image, PIPET can generate tiled images for any given size and resize 

these, apply tissue masks to the given image and stitch evaluated tiles back into the 

original image size.  
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1 Introduction 

 
Machine Learning (ML) has become increasingly popular over the last few years, 
especially with the advancement of semiconductor technology and thus with the rise 
of dedicated ML-Accelerators, like Google’s Tensor Processing Units (TPU) [1], ML-
Models have become ever more robust and reliable due to faster and more efficient 
training.  
In the medical sector, ML has long been a subject of extensive research [2], but 
many projects in the field have been confined to proprietary technologies or 
theoretical research papers.  
This thesis attempts to create a long-lasting basis for preparing data for use in 
training ML-models as well as a user-friendly tool to evaluate datasets using fully 
trained models.  
 

1.1 Motivation 

With Cancer being one of the most prevalent and varied causes of death on the 
Planet [3], researchers have developed a variety of methods and ways to detect and 
categorize cancers using ML [4]. One such method uses whole slide images, also 
known as virtual slides or digital slides, referring to high-resolution digital 
representations of complete histological slides, and a ML-Model that is trained to 
recognize cancer cells in such images. This approach of segmenting cancers 
requires the evaluated image to be pre-processed and to be split into smaller images. 
Manually pre-processing the amount of data required to train a ML-model is time 
consuming and repetitive.  
The present work focuses on developing a robust algorithm that can be used to 
speed up and automate tasks, such as slicing and masking a WSI. 
Furthermore, the developed project will be fully open source. 
 

1.2 Challenges 

The challenge in developing an algorithm that can reliably accomplish the goal of this 
thesis lies mostly in the varied formats, sizes, and resolutions WSIs come in, which 
will be described in the following. 
 
1.2.1 The TIFF Format 
 
One of the most common image formats used in WSIs is the Tagged Image File 
Format (TIFF), the format has a few advantages, which makes it suitable for the 
characteristically large WSI. The advantages TIFF provides in this context are the 
capability to be uncompressed, or have a lossless compression applied [5]. 
Furthermore, TIFF files can be comprised of multiple image files, enabling the TIFF 
to become pyramidal if the subfiles are the same image at multiple resolutions 
(Fig.1).  



  
 
 

 

8 
 

 
While the TIFF is one of the most flexible image formats in use today, that also brings 
problems with it. With the ability to be pyramidal, and tiled, or non-pyramidal and 
striped, or many other combinations of the name-giving tags, a TIFF itself may be 
entirely different to a program based on a few changes, even if visually there is no 
discernible difference. The added complexity that can be contained in a TIFF 
requires the program interacting with a given TIFF to be able to support a wide 
variety of TIFF tag-combinations, or the ability to parse a given TIFF into the required 
format depending on the operations being done on the image. 
 
Another common format used in WSI is SVS. SVS is a proprietary extension of the 
TIFF format, making it incompatible with many standard applications, fortuitously, 
there exist a number of open source libraries, like OpenSlide [6], that are capable of 
operating with SVS images.  
 
 
1.2.2 File Size 
 
With WSIs being upwards of 93000 x 80000 pixels in size, an uncompressed image 
of that size can be larger than one gigabyte. This makes working with such files 
incredibly memory intensive. The program working with such files needs to strike a 
balance between having parts, or the whole image in memory, and reading or writing 
other parts from and to the disk.   

Figure 1: Tiled Pyramidal TIFF, x and y specify the 
length and width of the image 
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Additionally, some operations on such large images can become bottlenecked by the 
compute performance of the device running the application. For example, generating 
a tissue mask using PIPETs tissue masking functionality, is of O(n²) complexity, 
which means the runtime scales with image size. 
  
1.2.3 Packages and Libraries 
 
Inter-package compatibility is an important aspect of this project. With the amount of 
varied operation and inputs PIPET deals with, it is important for image packages like 
Pillow, pyVips, OpenCV2 and OpenSlide to be able to perform their operations 
without having to read the base image from disk at each step.  
 

1.2 Objective 

The objective of this thesis is to develop a program that is capable of handling a 
broad spectrum of WSIs and prepare them for use with a ML-Model, as well as 
releasing the program as Free Open-Source Software (FOSS).  
PIPET is intended to be used as a standalone tool used in the command line or bash, 
the user should only need to supply a ML-model, a WSI and the preferred input 
parameters. Additionally, PIPET will be able to be used like a package to access its 
component functions in conjunction with other programs or projects. 
 

2.0 Technology 

As PIPET is intended to be used by scientists and be FOSS, special care had to be 
placed in selecting the technologies and applications used in its creation.  
 

2.1 Language 

For the development of PIPET, the programming language Python was chosen. 
Python is a highly portable, OS-Agnostic language capable on running on most 
hardware in use today, thus making it ideal for reaching the widest possible audience 
[7]. Furthermore, Python is very popular and thus has an extensive library of 
modules, so called packages[8], available for a wide variety of applications. Lastly, 
Python syntax is very human readable, allowing beginners and newcomers to a 
project to quickly understand what a given piece of code does.  
 
For PIPET, the Python version 3.11 has been chosen to maximize compatibility with 
existing packages, as one drawback of Python is that newer versions of Python may 
not be compatible with older packages.  
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2.2 Packages 

Taking advantage of the rich Python ecosystem, PIPET relies on a few packages to 
function. 
 
2.2.1 OpenCV 
OpenCV is, in its current version [9]  2.X, a C++ based collection of computer vision 
algorithms, PIPET uses OpenCV’s python wrapper, opencv-python.   
OpenCV is a powerful tool for image processing, it provides a host of different 
algorithms to transform images, videos, detect objects and even basic signal 
processing.  
While OpenCV is not the sole image-processing package in use in PIPET, it provides 
core functionality that is indispensable for PIPET, such as thresholding and noise 
removal. Additionally, OpenCV is the de-facto standard for image-processing in 
python. 
 
2.2.2 Pillow 
Pillow is the continuation of the deprecated Python Image Library (PIL), Pillow [10] is 
another image handling package which is extremely flexible and one of the de-facto 
standard packages used to handle images with Python.  
The central part of Pillow is formed by the Image class [11], which provides extensive 
functions to modify and handle a multitude of image formats, used in PIPET to post-
process the image after inference. 
As one of the most popular image handling packages, Pillow has ample support from 
other libraries to interact with Image objects, such as NumPy, OpenSlide and the 
aforementioned OpenCV. 
 
2.2.3 OpenSlide 
OpenSlide is the third pillar of PIPETs image handling capabilities.  
As the standard package for working with WSIs, OpenSlide provides functionality 
missing in some other packages, for example opening proprietary TIFF image files or 
other proprietary formats [6]. 
 
2.2.4 NumPy 
NumPy is the most popular and comprehensive Mathematics package for python, it 
is powerful, fast, and easy to use.  
The popularity of NumPy comes from its high efficiency, attributed to the optimized  
C-Code which contains its functions, in addition to its syntax which wraps around 
said functions [12].  
NumPy is used for different operations on the image arrays within PIPET. 
 
2.2.6 PyVips 
PyVips is a python binding for libvips, an image processing framework with a focus 
on efficiency. Furthermore, PyVips handles TIFF files using libTIFF, enabling very 
solid handling of large TIFF files, where Pillow falls short. Because of the efficiency 
PyVips provides, most of the file handling in PIPET is done by PyVips.  



  
 
 

 

11 
 

2.2.6 ML-Frameworks 
As PIPET is aimed at usage with ML-models it needs to support integration thereof. 
For such tasks, the Python environment has a few options. Pytorch [13] is one of the 
most popular choices for anything ML-related in Python thus making it the primary 
choice of running an inference on a given ML-model in PIPET. To facilitate a wider 
compatibility of ML-Models, ONNX (Open Neural Network Exchange), is used as the 
format which PIPET uses to load ML-models.  
 

2.3 IDE & Version Control 

PIPET is written in Python version 3.11 using the JetBrains Integrated Development 
Environment (IDE) PyCharm. PyCharm is a full-fledged IDE with support for all 
features needed to develop PIPET. PyCharm offers a full Python terminal, version 
control using Git, powerful refactoring tools, support for remote development, as 
mobile devices may not have the required hardware to execute PIPET on a full sized 
WSI, as well as support for automated tests and a powerful debugger. Images are 
represented as arrays, as such the built-in array-viewer of PyCharm is very useful to 
debug operations on arrays. 
PIPET is hosted and versioned on GitHub, using the integrated git client of PyCharm. 
 

3.0 Goals 

The primary Goal of this thesis is to develop a robust pipeline for processing whole 
slide images (WSIs) to facilitate subsequent segmentation. PIPET aims to transform 
raw WSI data into a format suitable for analysis by machine learning models, thereby 
enabling automated segmentation of histopathological structures. The goals for the 
loading and preparation are as follow: 
 

3.1 Efficient WSI Loading 

Implement mechanisms to efficiently load large-scale whole slide images into 
memory, ensuring optimal utilization of system resources while maintaining data 
integrity and accuracy. 
 

3.2 Data Preprocessing (Optional) 

Develop preprocessing techniques to improve the suitability of WSIs for 
segmentation. This involves normalization, colour standardization, and artifact 
removal to mitigate noise and variability inherent in histopathological images. 
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3.3 Interoperability 

Ensure interoperability with ML-based segmentation algorithms by providing 
functions and options to tailor the in- and outputs for the respective model used in 
conjunction with PIPET.  
 
By achieving these goals, PIPET will lay the foundation for reliable segmentation of 
histopathological structures in whole slide images within the Extended Neuronal-
Networks for Tumour Exploration (ENTE) project. 
 

4.0 Existing works 

PyHIST[14] 

PyHIST is an open source WSI pipeline that is similar to PIPET in scope. It offers 
functionality to generate tissue masks, evaluate singular tiles for useful data and 
allows export of selected tiles. While PyHIST offers a solid command line program to 
prepare WSIs, it is lacking a way to incorporate an inference step using a given ML-
model, as well as a function to output a fully processed WSI. Furthermore, PyHIST 
has been not actively maintained as of the date of writing for four years. [15] 
 

end2end-WSI-preprocessing[16] 

End2end-WSI-preprocessing is an open-source tool designed for comprehensive 
preprocessing of whole slide images (WSIs), offering an integrated solution for image 
enhancement and analysis. Similar in scope to PyHIST, it provides functionalities for 
preprocessing WSIs, including colour normalization, stain separation, and artifact 
removal. Additionally, end2end-WSI-preprocessing incorporates deep learning-based 
algorithms for feature extraction and classification, allowing users to leverage 
machine learning for WSI analysis. However, it should be noted that the tool lacks 
support for exporting processed tiles or fully processed WSIs, limiting its utility for 
downstream analysis tasks.  
 

WSITools[17] 

WSITools is a Python library tailored for efficient handling of WSIs in digital 
pathology. Notable features include robust patch extraction capabilities, enabling 
users to systematically extract patches from WSIs for downstream analysis tasks. 
Additionally, WSITools offers functionalities to detect tissue regions within WSIs, 
facilitating automated tissue segmentation for pathology analysis. The library also 
provides support for exporting and parsing annotations from popular platforms such 
as QuPath and Aperio ImageScope, enabling seamless integration with existing 
annotation workflows. WSITools also includes advanced features such as WSI 
registration for aligning image pairs. Furthermore, WSITools enables users to 
reconstruct WSIs from processed image patches, enabling visualization and analysis 
of the entire slide after preprocessing.  
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5.0 Implementation 

In the following part of the Thesis, the goals and technologies mentioned above, 
have been brought together into working solutions. Subsequent paragraphs will 
illustrate how the aforementioned goals have been reached and how PIPET works in 
detail. An overview of PIPETs structure can be seen in Figure 2. 
 

 
Figure 2: Flow diagram of PIPET.  
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5.1 WSI Loading 

As OpenSlide has been chosen as the basis for reading images from storage, special 
care had to be taken to implement a way for OpenSlide to deal with unexpected 
variations in TIFF or other formats that can occur from programs like Photoshop. 
1. try: 

 2.     # Attempt to open the image with openslide 

 3.     print("Opening slide...") 

 4.     if not tissue_mask: 

 5.         slide = openslide.open_slide(slide_path) 

 6.     else: 

 7.         temp_slide = pyvips.Image.new_from_file(slide_path) 

 8.         temp_slide = Preprocessing.apply_tissue_mask(temp_slide, thresholding_tech) 

 9.         temp_slide = pyvips.Image.new_from_array(temp_slide) 

10.         # write a tempfile to disk 

11.         with tempfile.NamedTemporaryFile(delete=False, suffix='.tiff') as temp_file: 

12.             temp_slide.write_to_file(temp_file.name, pyramid=True, tile=True, compression="jpeg") 

13.  

14.         del temp_slide 

15.  

16.         slide = openslide.open_slide(temp_file.name) 

17.  

18. except openslide.OpenSlideUnsupportedFormatError: 

19.     print("Converting file...") 

20.     # If openslide cannot open the image format, catch the error 

21.     # and then open the image with pyvips to convert it to a format openslide can read 

22.     temp_slide = pyvips.Image.new_from_file(slide_path) 

23.  

24.     if tissue_mask: 

25. 

26.         temp_slide = Preprocessing.apply_tissue_mask(temp_slide, thresholding_tech) 

27.         temp_slide = pyvips.Image.new_from_array(temp_slide) 

28.  

29.     # write a tempfile to disk 

30.     with tempfile.NamedTemporaryFile(delete=False, suffix='.tiff') as temp_file: 

31.         temp_slide.write_to_file(temp_file.name, pyramid=True, tile=True, compression="jpeg") 

32.  

33.     del temp_slide 

34.     slide = openslide.open_slide(temp_file.name) 
Code block 1: WSI Loading and exception handling if a unsupported image is loaded. 

 
 
To ensure maximum compatibility, PIPETs algorithm to load images with OpenSlide 
utilizes PyVips as a surrogate to convert ingested WSIs into a Pyramidal tiled TIFF 
with jpeg compression. As the Code block (Code block 1) shows, PIPET 
differentiates between two scenarios, segmenting WSIs with, or without tissue 
masks, it also tries to handle WSIs that are compatible directly with OpenSlide to 
save a small amount of resources. The algorithm works as follows. 
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First, PIPET checks whether a tissue mask should be applied to the WSI (Line 4 & 
24), this is important as the tissue mask is applied to the WSI before it is finally 
loaded by OpenSlide. If a tissue mask should be applied to the WSI, PIPET will load 
the WSI using PyVips (Line 7-14), in both scenarios where OpenSlide could or could 
not load the image by itself (Line 24 - 27). If no tissue mask is to be applied, the file 
will be passed to OpenSlide (Line 5), if OpenSlide throws an 
OpenSlideUnsupportedFormatError, PIPET will default to the PyVips conversion 
algorithm (Line 18). 
The conversion algorithm opens the WSI using PyVips (Line 22), it will then parse the 
image that is now in memory to a standard pyramidal tiled TIFF with jpeg 
compression (Line 31), subsequently PIPET uses the Python tempfile module to 
write a temporary version of the converted WSI to disk (Line 30). Afterward it is 
opened using OpenSlide by passing the tempfile reference to OpenSlide (Line 35).  
If a Tissue mask is applied, the algorithm works largely the same. Except it passes 
the read image to PIPETs Utils module, which will apply a tissue mask before it is 
returned (Line 8 & 26).  
 
PyVips has been chosen in this scenario due to its breadth of supported formats, as 
well as its efficient method in which it stores large images in memory. Additionally, 
PyVips has the ability to save such large images to disk again, for example, Pillow 
has been considered for this use case to limit conversions between image libraries, 
but Pillow exhibited issues saving images in the necessary sizes required for WSI 
processing.  
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5.2 Preprocessing 

In order to efficiently segment a WSI, it is necessary to discern whether a given slice 
contains tissue or not, with this information it is possible to skip empty slices to speed 
up processing of large WSIs. The first step is applying a Tissue mask to the image. 
1. def apply_tissue_mask(image, thresholding_tech, threshold=127, filter=True, rm_noise=True, 

noise_filter_level=50, ): 

2.     print("Starting masking process") 

3.     image = image.numpy() 

4.     original_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 

5.     image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) 

6.      

7.     if rm_noise: 

8.         print("Removing noise") 

9.         kernel = numpy.ones((noise_filter_level, noise_filter_level), numpy.uint8) 

10.         image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel) 

11.         image = cv2.medianBlur(image, 5) 

12.         image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel) 

 
 Code block 2: Preprocessing using morphological OpenCV operations. 

In preprocessing the WSI, we remove the artifacts from scanning or other artifacts 
that occur in WSIs, this is done with a combination of thresholding algorithms and 
noise reductions techniques. Thresholding describes algorithms to create binary 
images of black and white by comparing a given pixel to a threshold value and 
deciding whether the pixel should be black or white, these threshold values can 
range from being a hardcoded value to being calculated by a mathematical formula 
[18]. 
 
The Preprocessing class from the Utils module contains the thresholding algorithm, 
the apply_tissue_mask function is setup to be easily expandable to cover more 
complex thresholding techniques if necessary. In the scope of this thesis, it contains 
Otsus binarization, a simple thresholding algorithm, and adaptive thresholding, all 
provided by OpenCV. It functions as follows. 
 
apply_tissue_mask expects an image from the PyVips module, as the loading of 
WSIs is done by PyVips in the main class. Additionally, the function requires the 
parameter thresholding_tech, which is a string that corresponds to one of the three 
available thresholding techniques implemented. The remaining parameters are for 
more fine-grained control, like skipping the de-noising step, or not applying a blur 
filter before thresholding, in addition to the threshold for simple thresholding (Line 
1&2). The preprocessing steps are done on NumPy arrays that contain the image in 
greyscale. In addition, the original image is stored in a NumPy array as well, this is to 
facilitate merging in a later step (Line 5-7). 
When noise reduction is chosen, OpenCV’s morphological operations are employed 
to remove noise from the image (Line 7-12). In detail, the image undergoes a three-
step process, first the image is being “opened”, in OpenCV opening describes the 
process of eroding, and then dilating the image. Erosion helps in removing small, 
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isolated pixels (salt noise) in the image but reduces the size of objects and dilation 
increases the size of foreground objects.  
Followed by a medianBlur operation, this operation is highly effective against small, 
isolated pixels that may have been missed on the first operation, here a pixel is 
replaced with the median value of its surrounding pixels. 
Lastly, in a closing operation, which is the inverse of the opening operation is used to 
close any holes that may have developed in the previous steps, it is in essence 
dilation followed by erosion. 
 
1. def otsus_binarization(image, filter): 

2.     print("Applying Otsu's binarization") 

3.     if filter: 

4.         blurred_image = cv2.GaussianBlur(image, (5, 5), 0) 

5.         ret, mask = cv2.threshold(blurred_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 

6.     else: 

7.         ret, mask = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 

8.  

9.     return mask 
Code block 3: Thresholding using Otsus method. 

After the preliminary steps are finished, the tissue mask is created with the 
thresholding technique chosen, in the example above (Code block 3) Otsus method 
is chosen. 
Otsus_binarization can be executed either with a gaussian blur operation or without. 
This can be chosen by specifying the filter parameter of apply_tissue_mask (Line 3). 
The application of the filter further reduces the impact noise has on the thresholding, 
in some cases it may still be beneficial to skip this step to preserve sharper detail, 
thus the user can choose the optimal procedure for their use case. 
Otsus method has been chosen as the default algorithm for PIPET as it requires the 
least amount of user-input while providing good results in testing. It works by 
analysing the histogram of a grayscale image and finding the threshold that 
maximizes the separation between foreground and background pixel intensities [19]. 
This threshold is then applied to the image, resulting in a binary image where pixels 
are categorized as foreground or background based on their intensity values. Otsu's 
method is widely used for tasks such as object detection and image segmentation 
because it requires no manual input and effectively separates objects from the 
background. 
After the image has been binarized, the ret variable now contains the chosen 
threshold and is discarded, while mask contains the actual mask and is returned to 
the previous function. 
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The last step before the masked image is returned, is applying the generated mask 
to the original image. The steps are illustrated in Figure3. 
def merge(image, mask): 

2.     print("Merging mask with source.") 

3.     kernel = numpy.ones((20, 20), numpy.uint8) 

4.     mask = cv2.bitwise_not(mask) 

5.     mask = cv2.dilate(mask, kernel, 1) 

6.     combined_image = cv2.bitwise_and(image, image, mask=mask) 

7.      

8.     black_pixels = numpy.where( 

9.         (combined_image[:, :, 0] == 0) & 

10.         (combined_image[:, :, 1] == 0) & 

11.         (combined_image[:, :, 2] == 0) 

12.     ) 

13.     combined_image[black_pixels] = [255, 255, 255] 

14.     combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB) 

15.     return combined_image 
Code block 4: Merging by arithmetic operations 

• The black and white image from the thresholding step is inverted as the areas 
from thresholding where tissue is are black. (Line 4) 

• The mask is dilated to ensure no tissue is removed when merging. (Line 5) 

• The mask and the original image are arithmetically combined, if the mask 
value at a particular pixel is zero, the corresponding pixel value in the output 
image will be set to zero, regardless of the pixel values in the original image. 
(Line 6) 

• An array is created in which indices are stored of the black pixels in the 
combined_image array, those will then be set to [255, 255, 255] which 
corresponds to white. (Line 8-14) 

• Finally, the image will be converted to Red Green Blue (RGB) colour space, 
as OpenSlide would read OpenCV’s BGR colours as RGB anyway thus 
falsifying the colours of the image.  

 
Figure 3: WSI Tissue masking process 
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5.3 Slice Processing 

When the WSI has been successfully loaded into memory, PIPET will calculate the 
slices by iterating through the dimensions of the slide and dividing it into smaller 
sections.  
1.  def define_slices(slide, slice_height, slice_width): 

2.      print("Defining slices.") 

3.      slide_width, slide_height = slide.dimensions 

4.      vertical_slices = math.ceil(slide_height / slice_height) 

5.      horizontal_slices = math.ceil(slide_width / slice_width) 

6.      slice_positions = [] 

7. 

8.      for i in range(horizontal_slices): 

9.          for y in range(vertical_slices): 

10.             slice_positions.append((i * slice_height, y * slice_width)) 

11.     print("Defined: ", len(slice_positions), " Slices.") 

12. 

13.     return slice_positions 
Code block 5: Defining WSI slices 

The function define_slices takes in three parameters: slide, representing the WSI; 
slice_height and slice_width, denoting the dimensions of each slice. It starts by 
retrieving the dimensions of the slide using its dimensions attribute (Line 3). Then, it 
calculates the number of vertical and horizontal slices required to cover the entire 
slide (Line 4-5). It then iterates over the horizontal and vertical divisions, calculating 
the coordinates for each slice based on the provided slice height and width (Line 8-
10). 

Figure 4: WSI slices 

As is visible in Figure 4, the chosen slice size does not divide evenly across the 
resolution of the sample WSI, leading to slices that extend further out than the WSI. 
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The slicing algorithm thusly employs the read_region function of OpenSlide which will 
fill an incomplete region with white pixels.  
1.  def slice_slide(slice_positions, slide, slice_width, slice_height): 

2.      slice_list = [] 

3.      for slice_position in slice_positions: 

4.          print("Slicing " + f'{slice_position[0]}' + ':' + f'{slice_position[1]}') 

5.          slice = slide.read_region(slice_position, 0, (slice_width, slice_height)) 

6.          temp_slice = Slice(slice, slice_position, slice_width, slice_height) 

7.          slice_list.append(temp_slice) 

8. 

9.      return slice_list 
Code block 6:Slicing WSIs 

 
The slice_slide function is responsible for creating the slice objects (Line 6), these 
are the objects used in PIPET to represent the slice and its attributes for further 
segmentation. The algorithm iterates through the previously calculated slice_position 
list and utilizes OpenSlide.read_region to read the appropriate pixels from the WSI, 
returning a list of slices representing the WSI. 

5.4 The Slice class 

 

 
Figure 5:Class diagram for the Slice class 

The Slice class is the primary object on which PIPET operates after operations on 
the whole WSI are done. This is to facilitate cleaner and easier to read function calls. 
 
Data: a typeless variable to store the current state of the image represented by the 
slice. 
Location: a tuple containing the coordinates the slice belongs on in the WSI. 
sizex and sizey: the actual size of the slice as it was read from the WSI. 
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1.  def evaluate(self): 

2.      temp_data = numpy.asarray(self.data) 

3.      temp_data = cv2.cvtColor(temp_data, cv2.COLOR_RGB2GRAY) 

4.      _, temp_data = cv2.threshold(temp_data, 127, 255, cv2.THRESH_BINARY) 

5.      if cv2.countNonZero(temp_data) == temp_data.size: 

6.          print("Slice does not contain data.") 

7.          return False 

8.      else: 

9.          print("Slice does contain data") 

10.         return True 
Code block 7: Evaluating slices 

The evaluate function within the Slice class serves to determine whether the slice 
contains tissue, enabling other functions to exclude empty slices from further 
processing (Figure 6).  
In the evaluate function, the data contained in the slice object undergoes a 
binarization to enable the countNonZero function to determine how many black pixels 
are present in the current slice, black pixels in this situation representing tissue. It is 
then compared to the number of overall pixels present in the slice. If any pixel has 
been found to be black, or zero, the evaluation returns True.  

 
 

5.5 Inference 

The ML model utilized for testing and developing PIPET relies on the PyTorch 
segmentation models framework. It requires input slices sized 256 x 256, which 
should be normalized to a range between 0 and 1, spanning from 0 to 255. 

Figure 6: Skipped slices 
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1. def run_inference(slice, pytorch_model, input_x, input_y): 

2.     if slice.evaluate(): 

3.         print("Evaluating...") 

4.         slice.data = slice.data.convert("RGB") 

5.         temp_slice = resize(asarray(slice.data), (input_x, input_y)) 

6.         transformed_input = torch.from_numpy(temp_slice).type(torch.float32).permute(2, 0, 1) 

7.         output = pytorch_model(transformed_input) 

8.         output = output.sigmoid() 

9.         output = output.squeeze(0).squeeze(0) 

10.        img_array = output.detach().numpy() 

11.        img_array = resize(img_array, (slice.sizey, slice.sizex)) 

12.        slice.data = Image.fromarray((img_array * 255).astype(numpy.uint8)) 

13.        slice.data = slice.data.point(lambda x: 1 if x > 120 else 0, mode='1') 

14.    else: 

15.        print("Skipped slice") 

16.    return slice 
Code block 8: Inference and postprocessing using PyTorch and pillow 

The run_inference function expects a slice object, a ML-model compatible with 
PyTorch and the size of the input the model expects. 
As the slices are read in the RGB colour space with alpha channel from OpenSlide, a 
conversion to RGB is performed to comply with the input shape of the Model. 
ScikitImage is used to perform the resize and normalization step in one. 
The normalized image array is then converted into a three-dimensional tensor, which 
is then rearranged. The numbers 2, 0, and 1 represent the new order of dimensions, 
such that the third dimension becomes the first, the first dimension becomes the 
second, and the second dimension becomes the third. 
The tensor is then passed to the PyTorch model which will perform the inference on 
the tensor. The sigmoid function squashes the input values between 0 and 1 so the 
later steps can convert it back into an image with values between 0 and 255. 
Squeezing the output tensor twice removes two single dimensional entries from the 
tensor, effectively leaving the array containing the image data. 
After converting the tensor into a NumPy array, the slice is upscaled to the original 
slice size. 
The upscaled slice is then multiplied by 255, creating a classic RGB image, following 
this, the lambda function (lambda x: 1 if x > 120 else 0) is applied to each pixel value 
x. If the pixel value is greater than 120, it is set to 1, otherwise, it is set to 0. 
“Mode=1” indicates the resulting image should be a binary image. 

 

5.6 Stitching and Saving 

Reconstructing, or stitching the image is done by iterating over the list of slice objects 
returned from the inference step and inserting the slices into a blank image of the 
size of the original image.  
1. def stitch_slide(slice, blank): 

2.     print("Stitching slice to:" + str(slice.location)) 

3.      

4.     vips_slice = pyvips.Image.new_from_array(asarray(slice.data)) 
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5.     blank = blank.insert(vips_slice, slice.location[0], slice.location[1]) 

6.     slice.close() 

7.     return blank 
Code block 9: Stitching WSIs using insert(). 

The stitching is carried out using the insert function provided by PyVips, this function 
works well for this application as it automatically crops out parts of the slice that 
where not part of the original image.  
 
1   def save_slide(slide, output_path): 

2       print("Writing finished image.") 

3       os.makedirs(output_path, exist_ok=True) 

4       output_file_path = os.path.join(output_path, "segmented_slide.tiff") 

5       slide.write_to_file(output_file_path, pyramid=True, tile=True, 

6                           compression="jpeg") 
Code block 10: Saving completed WSIs using pyvips. 

Saving the finished WSI is done by PyVips as the other modules, like Pillow, had 
issues saving TIFF images above a certain size, throwing errors and not completing 
the image. Additionally, PIPET makes use of the python OS module to check 
whether the output path already exists. The output path is then combined with a 
standard filename for the output with which the image is then saved.  
 

 
Figure 7:425 Slices stitched to finished image  
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6.0 Setup 

PIPET has been developed with memory usage in mind, stemming from the fact, that 
WSI’s can reach in excess of one gigabyte in size and 100.000 by 100.000 pixels in 
resolution. Special care has been put into making sure as little data as possible is in 
memory at a time. The machine PIPET has been developed and tested on is 
equipped with an AMD Ryzen 3600 six core-twelve thread CPU and 32GB of RAM. 
 
The two WSI samples used for evaluation are TIFFs in the format needed to be 
compatible to OpenSlide, one has been provided for the development of PIPET and 
the other has been derived from the provided tiff and downsized significantly. 
Additionally, some samples for further testing have been obtained from the open 
access database of the National Cancer Institute [20]. The variety of sizes available 
for Testing range from 7.851 x 5.109 px(Figure 8.1) to 93.000 x 80.000 px(Figure 
8.2), corresponding from 20MB to 1.288MB, most of the testing has been done on 
the supplied WSI with a resolution of 36.230 x 23.577 px (Figure 8.1).  
The samples obtained through the National cancer Institute’s portal are WSIs from 
breast tissue, meaning the results from PIPET will be inaccurate due to the focus of 
the ML-model on glioblastomas. However, they have been used to verify functionality 
of other file formats, svs in this case, and different WSI sizes.  

 
To evaluate memory and CPU time usage, memory-profiler, a python package 
capable of monitoring and analyzing the memory usage and execution time of a 
python program is used. While memory-profiler is no longer actively maintained, its 
ease of use made it a good tool to analyze the performance of PIPET. 
 
 

Figure 8: Samples used in development of PIPET. 
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6.1 Profiling 

The used memory-profile package comes with a utility called “mprof”, which can 
generate a logfile containing the overall memory usage of the program when it is 
executed as shown in table 1, afterward it can also generate a plot of the logfile. The 
profiler is also capable of analyzing memory profiles line-by-line when used as a 
decorator in the code, this functionality, while useful for optimization has limited 
output capabilities and was not used in this thesis.  
CMDLINE main.exe 

MEM 2.187500 1711729085.0375 

MEM 21.527344 1711729085.1385 

MEM 32.777344 1711729085.2395 

MEM 54.277344 1711729085.3405 

MEM 72.960938 1711729085.4415 

MEM 89.839844 1711729085.5425 

MEM 98.164062 1711729085.6440 

MEM 124.828125 1711729085.7450 

MEM 138.515625 1711729085.8460 

MEM 147.933594 1711729085.9470 

MEM 161.105469 1711729086.0475 
Table 1: mprof output 

 
The logfiles of mprof consist of two space separated values, one containing the 
memory usage and the other containing the Unix timestamp of the memory value. 
While mprof can generate a plot on its own (Figure 9), it is not great for the way 
PIPET operates when “compiled” to an exe.  

Figure 9: mprof plot 

As it stands, PIPET needs human input when used in the command line, meaning 
execution time is not uniform across runs with the same parameters. Additionally, the 
plot itself is not very readable as the plot markers clutter visibility.  
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For the evaluation of the mprof logfile, matplotlib has been utilized to create a more 
suitable plot.

 
Figure 10:matplotlib plot 

As is evident in Figure 10, the plot now shows execution time after the human input 
has been completed, creating comparability between runs. Furthermore, it now 
shows a numerical value of maximum memory usage and the run duration. As the 
state of the memory does not change until the input is complete, the second to last 
value of the memory in the input phase has been chosen as the start point of the 
duration evaluation.   
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7.0 Results 

The following section critically evaluates the attainment of the objectives and Goals 
outlined in section 3. Throughout the previous chapters, the thesis comprehensively 
highlighted the development and functionality of PIPET.  
 
The primary goal, as stated in section 3, was to develop a robust pipeline for 
processing WSIs, has been fully achieved. PIPET works with all tested resolutions 
and filetypes without issue. Furthermore, the goal of section 3.2, image 
preprocessing, has been realized as well. 
 

7.1 Architecture 

PIPET’s structure changed from the beginning to completion of the project from being 
a singular function call to a collection of methods operating on a class instance to 
several static functions capable of being executed by themselves, while retaining a 
function that can execute the entire processing stack from a single call. It is also 
possible for PIPET to be built as an executable capable of handling WSI processing 
in the command line. The functions of each class, be it preprocessing, or PIPET’s 
main code are built as static methods to encapsulate specific functionalities within the 
context of the class itself, enabling modularization, improved organization, and ease 
of access without the need for instantiation of class objects.  
 

7.2 WSI Loading 

In section 3 it is stated that PIPET should be efficient in loading large-scale WSIs, 
this goal has been achieved satisfactorily, but in review, there is still the possibility to 
optimize this further, in section 8, the thesis will explore this further. Currently, PIPET 
will keep all slices in memory at one time, this will mean an increase in memory 
usage with increase in file size This increase in memory utilization is not linear, for 
example using the provided sample WSI of 36.230 x 23.577 px (161MB), and 
accounting for 264,3MiB of overhead, uses 3810,62MiB of memory. While the scaled 
down version (7851x5109 px, 20MB) only uses 513,23MiB of ram, this is a difference 
in memory usage of a factor of 7.4, while the file size differs by a factor of 8,5. (Figure 
11) 
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This difference can be even more significant in some edge cases. For example, a 
sample, that has since been discarded from the test suite, was 256MB in size but 
exceeded 20GB of memory usage (Figure 11). 

Figure 12: Discarded sample image mprof plot. 

Figure 11:Memory usage of PIPET with different WSI sizes 
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The difference between the samples may stem from a few factors. The samples 
obtained from the NHI all are in the SVS Format making them “modified” TIFF 
images, this could mean their compression algorithm could be the cause of this 
phenomenon. Furthermore, they may use a higher colour depth, causing each pixel 
to take up more memory than in other samples.  
 
Overall, PIPET, in testing handled every image without issue. It should be noted, the 
very large resolution sample from the NHI portal (to 93.000 x 80.000 px) took up 
enough memory to cause the device to crash, a private server has been used to run 
this image once, but no mprof plot could be generated due to a lack of root access. 
 

7.2.1 WSI segmentation 

While memory usage was the main focus of optimization, thought has gone into 
reducing the runtime of PIPET’s pipeline. With the evaluation function of the slice 
class, it is possible to skip empty slices, this can lead to a significant reduction in 
CPU usage and runtime if the WSI contains a lot of empty slices (Figure 12).  

As is visible in Figure 12, with an appropriately clean image, the execution time in 
this example can be reduced by 12,6%. This reduction is dependent on the 
cleanliness of the WSI, for this test, the image 1 from Figure 7 has been used, once 
unmodified, and once after preprocessing (Figure 14).  

Figure 13: Runtime of PIPET with and without skipping slices 

Figure 14: Masked sample WSI. Evaluated: 638 Skipped: 226(Red) 
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7.3 Preprocessing 

The optional goal of implementing Preprocessing functionality outlined in section 3.2 
has been achieved. While the preprocessing module works for most available 
samples, the nature of the operations done makes this functionality very memory 
intensive.  

As is visible in Figure 15, the thresholding step almost quadruples the memory used 
with the same input. This is due to the nature of the global thresholding methods 
used, they operate on the whole image at once, necessitating the entire image to be 
stored in memory as a NumPy array with dimensions corresponding to the image 
size multiplied by the colour depth. It also requires another copy of the image in 
greyscale, out of which the mask is created. In the step merging the original image 
and the mask, the image is essentially in memory three times, the original, the mask 
and the combined image.  
 
7.3.1 Otsus binarization and Simple thresholding 
While PIPET has functionality for three thresholding techniques, Otsus binarization 
and Simple thresholding do not differ much in terms of resource usage (Figure 16). 

Figure 15:Otsus binarization memory usage versus no thresholding. 

Figure 16: Otsus binarization versus Simple thresholding. 
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Both algorithms deliver good results in terms of cleaning up the WSI (Figure 17 & 
18). Otsus binarization has been chosen as the default method on account of the 
automatic nature of the algorithm. 

 
Simple thresholding requires the user to determine the optimal threshold to achieve 
the best results possible, if the value is chosen poorly, the result will be nigh 
unusable (Figure 18). 

7.3.2 Adaptive thresholding 
The third algorithm available in PIPET is Adaptive thresholding. Unlike global 
thresholding, where a single threshold value is applied to the entire image, adaptive 
thresholding computes different thresholds for different regions of the image. This 
should help in handling variations in illumination and contrast across the image. 
Unfortunately, while developing and testing the preprocessing module, Adaptive 
thresholding has remained almost unusable due to the time required to execute as 
well as the bad results (Figure 19).  

Figure 17: Mask created using Otsus binarization. 

Figure 18:Simple thresholding with different 
values. 
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As is visible above, the results of the Adaptive thresholding are not ideal for the 
application while the execution time is also more than double of the other options 
available (Figure 20).  
 
 

Overall, Adaptive thresholding was not a good choice for PIPET’s preprocessing 
module, the computation complexity of evaluating every pixel by calculating a local 
threshold from its neighbouring region is excessive for WSIs. The variability of the 
WSI poses another challenge to the algorithm, as is visible in Figure 19 the regions in 
the image that where white are being misinterpreted while regions in the tissue are 
falsely negated. Furthermore, choosing a block size for adaptive thresholding is 
harder than choosing a static threshold as with simple thresholding.   
 
 
  

Figure 19: Adaptive thresholding block size 1001 and 201. 

Figure 20: Adaptive thresholding versus Simple thresholding 
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7.4 Interoperability 

In section 3.3 it was stated that one goal is to maximize the interoperability so that 
PIPET can work with different ML-models and WSI file types. PIPET is currently 
capable of reading most image formats, in testing there was no format that threw an 
error. PIPET currently expects ML-models in the onnx format, as the focus of PIPET 
was on the development of the pipeline, no alternative models have been tested.  
 

8.0 Conclusion 

The Goals stated for this Thesis have been successfully completed and the optional 
objectives have been implemented as well. WSIs can be completely segmented with 
a given ML-model, tissue masks can be applied, and the resulting image will be a 
good representation of the input. Furthermore, a standalone version of PIPET is 
available for execution without setting up a python environment.  
 
In the following, problems, and suggestions for the further development of PIPET are 
explored. 
 

8.1 Problems 

The most critical problems in PIPET’s development have arisen due to data 
management and data structure issues. Firstly, in early stages of development, 
PIPET was setup in such a way that a slide class existed which needed to be 
instantiated with values that would be needed to execute the pipeline. This class was 
cluttered, and the function calls were messy. It also blocked any way to access 
singular functions calls from external code, which could be useful to users, for 
example, getting a list of slice objects and use that for training. Additionally, first 
iterations of PIPET had excessive memory usage due to unnecessary conversions 
and operations between libraries, causing issues even with scaled down images.  
 
The aforementioned issue with the data structure proved the largest roadblock in the 
development of PIPET. ML-models expect input in very specific data structures 
called tensors, this input shape has been provided, but an issue arose when the ML-
model output did not match the expected output. This caused a delay in development 
for debugging, which ultimately led to inspection of working example code utilizing 
this model and analyzing each variable in a debugger. The issue has been found to 
be a different function for resizing slices, PIPET used the pillow function resize() 
which resizes the image and keeps the normal RGB format. Meanwhile, the ML-
model expected input generated by the resize() function from ScikitImage, which 
resizes the image but also normalizes the output to a value between 0 and 1. Once 
this has been identified, it was trivial to exchange the pillow function for the 
ScikitImage function. 
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A more minor issue, mostly due to less time constraints, arose due to the conversion 
between the supplied onnx-format model and PyTorch. In the early stages of 
development, it was attempted to use the onnx runtime to execute the ML-model, but 
this avenue of approach did not work. It was then tried to use onnx2pytorch to 
convert the model to PyTorch and use PyTorch to execute the model, which also 
resulted in many errors for which no fix could be found, in the end, it was found the 
appropriate package for such a conversion to be onnx2torch, which worked 
flawlessly.  
 

8.2 Recommendation for WSI loading 

As mentioned previously in section 7.2 the current WSI loading algorithm can be 
improved. Currently, PIPET will slice the entire WSI into slices and keep those in 
memory, with relatively minor modifications to the code it should be possible to 
reduce memory usage of PIPET without tissue masking by a large margin.  
 
1. slice_list = PIPET.slice_slide(slice_positions, slide, slice_width, slice_height) 

2. PIPET.close_slide(slide) 

3. vips_output = pyvips.Image.black(slide_dimensions[0], slide_dimensions[1]) 

4. index1 = 0 

5. index2 = 0 

6. 

7. for slices in slice_list: 

8.     index1, index2, evaluated_slice = PIPET.run_inference(slices, pytorch_model, ml_input_width, 

ml_input_height, index1, index2) 

9.     vips_output = PIPET.stitch_slide(evaluated_slice, vips_output) 

10. 

11. PIPET.save_slide(vips_output, output_path) 
Code block 11: Current pipeline 

With changing how the slicing function works, we can expect a great reduction in 
memory usage as visible in Figure 21. 
1. slice_positions = PIPET.define_slices(slide, slice_height, slice_width) 

2. vips_output = pyvips.Image.black(slide_dimensions[0], slide_dimensions[1]) 

3. index1 = 0 

4. index2 = 0 

5. 

6. for slice_position in slice_positions: 

7.     slice = PIPET.slice_slide(slice_position, slide, slice_width, slice_height) 

8.     index1, index2, evaluated_slice = PIPET.run_inference(slice, pytorch_model, ml_input_width, 

ml_input_height,index1, index2) 

9.     vips_output = PIPET.stitch_slide(evaluated_slice, vips_output) 

10. 

11. PIPET.save_slide(vips_output, output_path) 
Code block 12: Proposed pipeline. 
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1. def slice_slide(slice_position, slide, slice_width, slice_height): 

2.      

3.         print("Slicing " + f'{slice_position[0]}' + ':' + f'{slice_position[1]}') 

4.         slice = slide.read_region(slice_position, 0, (slice_width, slice_height)) 

5.         temp_slice = Slice(slice, slice_position, slice_width, slice_height) 

6.          

7.     return temp_slice 
Code block 13: Proposed slicer 

As is visible in the two code blocks above, the change is going from slicing the entire 
WSI at once to one slice at a time, resulting in the memory usage reduction in Figure 
21. 

A version of PIPET containing these changes will be supplied with this thesis, 
regrettably this opportunity was only discovered after completion of most of the 
Thesis and as such it was decided to include them in this section instead of 
reworking section 5 and section 7 due to time constraints. 

 
   

Figure 21: Impact on memory Consumption with Proposed changes (Figure8.1 used). 
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8.3 Recommendations for processing 

To enable further compatibility with different ML-models, the run_inference() function 
should be extended with a flag to change from normalized image values to standard 
RGB image values, enabling the usage of ML-models trained with this data type. 
Additionally, an option to specify the input shape for models could be implemented as 
well.  
 
8.3.1 Model detection 
It would be useful to implement functionality to detect the filetype of ML-models, 
enabling dynamic conversion between models, enabling a wider range of models to 
be used with PIPET. 
 
8.3.2 Finetuning for filtering functions 
The filtering and noise reduction functions currently rely on values that have been 
chosen without exhaustive testing. These values could be tuned to improve results 
even further. Additionally, the evaluation function from the slice class could be made 
less restrictive, allowing a threshold to be set on how much of an image should 
contain data before it is evaluated.  
 
8.3.3 Type Hinting  
The segment_slide() function expects 10 arguments to be passed in its current form, 
if the previous recommendations are implemented this number would increase even 
further. To allow for an easier time calling this function, the functions should 
implement type hinting. 
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