

1

HNU Working Paper
Nr. 54

Thomas Bauer

Auswirkungen von auf künstlicher Intelligenz basierender
Generierung von SQL-Abfragen auf die Lehre

Untertitel

9 / 2025

Dr. Thomas Bauer, Professor für Wirtschaftsinformatik mit Schwerpunkt Datenbanken,

Hochschule für angewandte Wissenschaften Neu-Ulm

University of Applied Sciences

Wileystraße 1, D-89231 Neu-Ulm

2

Abstrakt (in Deutsch; max. 10 Zeilen)

Heutzutage ist es möglich, sich mittels Künstlicher Intelligenz automatisch Programmcode

generieren zu lassen. Dies gilt auch für Datenbankabfragen, die in der Sprache SQL erstellt

werden. Diese Möglichkeit wirft die Frage auf, ob es überhaupt noch notwendig ist, SQL im

Rahmen von Datenbank-Vorlesungen zu lehren. Außerdem ist zu klären, inwieweit Studieren-

de die SQL-Generierung zur Erstellung von Prüfungsergebnissen nutzen können bzw. wie

Prüfungen gestaltet sein müssen, um entsprechende Betrugsversuche zu vermeiden. Hierzu

wird in dieser Arbeit der Stand der Forschung zum Thema SQL-Generierung dargestellt.

Außerdem werden die Ergebnisse von Experimenten beschrieben, in welchen die Qualität von

automatisch generierten SQL-Abfragen ermittelt wurde.

Freie Schlagwörter: Datenbanken, SQL, Künstliche Intelligenz, Large Language Model

JEL-Klassifikation: L86

3

Inhaltsverzeichnis
Motivation .. 4
Literaturanalyse ... 4

NL2SQL in der Lehre ... 5
Analyse der Fähigkeit zur Generierung von SQL-Abfragen ... 7
Verbesserung von NL2SQL ... 8
Fazit ... 9

Aufgabenstellungen für Datenbank-Vorlesungen ... 10
Verwendete Szenarien ... 11
Durchführung der Experimente .. 13
Auffällige Einzelergebnisse .. 16

Unzulängliche Lösungen .. 16
Sonstige Auffälligkeiten .. 32

Fazit ... 34
Schlussfolgerungen ... 35

SQL-Generierung in der betrieblichen Praxis .. 35
Auswirkungen auf die Lehre .. 36

Zusammenfassung, Limitationen und Ausblick ... 37
Literatur ... 38
Anhang A: Übersicht über die Aufgabenstellungen .. 41
Anhang B: Mögliche Lösungen für die Aufgabenstellungen ... 44

4

Motivation
Künstliche Intelligenz (KI) ist inzwischen sehr gut in der Lage, Texte zu generieren. Mit einem

entsprechenden Large Language Model (LLM) kann auch Programmcode generiert werden. Im

Kontext von Datenbanken sind dies Abfragen in SQL. Es wird hierbei eine natürlichsprachliche

Aufgabenstellung vorgegeben und zusätzlich das Datenbank-Schema, das die zugrunde

liegenden Datenbank-Tabellen beschreibt. Das LLM generiert daraus eine Abfrage in der

Sprache SQL (Natural Language to SQL: NL2SQL).

In dieser Arbeit wird untersucht, wie gut die Fähigkeit heutiger LLMs hierbei sind. Dabei liegt

der Fokus auf Auswirkungen, die sich auf die Lehre zum Thema Datenbanken ergeben. Die

Forschungsfrage lautet also: Welche Qualität haben aktuell automatisch generierte SQL-

Abfragen und welche Konsequenzen ergeben sich daraus für die Lehre?

Hierbei werden die folgenden beiden Teilaspekte betrachtet:

1) Korrektheit: Für den Fall, dass es mittels eines LLM möglich ist, stets (d.h. für alle Aufgaben-

stellungen) eine (fast) zu 100% korrekt SQL-Abfrage zu generieren, besteht keine Notwendig-

keit mehr, SQL-Kenntnisse zu lehren. Diese hätten dann allenfalls den Zweck, die generelle

Funktionsweise von Datenbanksystemen besser zu verstehen. Falls jedoch manchmal oder für

bestimmte Aufgabenstellungen oder Datenbank-Schemata fehlerhafte SQL-Abfragen generiert

werden, sind weiterhin SQL-Kenntnisse erforderlich, z.B. zum Überprüfen und Verbessern der

generierten SQL-Anweisungen.

2) Prüfungsgestaltung: Wenn LLMs lediglich in der Lage sind, relativ häufig korrekte SQL-

Abfragen zu generieren, dann sollten diese (wie erwähnt) nicht unbesehen verwendet werden.

Dennoch bieten sie Studierenden die Möglichkeit, ohne ausreichende SQL-Kenntnisse und bei

geringem Aufwand, Lösungen für Prüfungsaufgaben zu erzeugen. Sind viele der generierten

SQL-Abfragen korrekt oder beinhalten nur kleinere Fehler, so wird mit dieser Vorgehensweise

eine recht gute Note erzielt werden. In diesem Fall sollten Prüfungen so gestaltet sein, dass

durch dieses Betrugspotential kein großer Vorteil gegenüber Studierenden erzielt werden kann,

die ihre Prüfungsergebnisse selbst erstellen.

Im nachfolgenden Abschnitt wird wissenschaftliche Literatur zum Thema NL2SQL dargestellt.

Darauf folgt eine Beschreibung der durchgeführten Experimente und deren Ergebnisse. Diese

haben das Ziel, die heutige Qualität von NL2SQL in Szenarien zu ermitteln, die bzgl.

Komplexität des Datenbank-Schemas und Schwierigkeitsgrad üblichen Lehr- und Prüfungs-

inhalten entsprechen. Darauf folgt ein Abschnitt, der Schlussfolgerungen für die Lehre zieht.

Der Betrag schließt mit einer kurzen Zusammenfassung der wichtigsten Erkenntnisse.

Literaturanalyse
Im Gesamtthema der Generierung von SQL-Abfragen, ausgehend von einer in natürlicher

Sprache vorgegebenen Problemstellung (NL2SQL), findet aktuell viel Forschung statt. Dies ist

auch daran erkennbar, dass die meisten der nachfolgend dargestellten Veröffentlichungen

recht neu sind. Bei einigen Arbeiten handelt es sich sogar um Vorab-Veröffentlichungen. Diese

wurden berücksichtigt, obwohl ihre Qualität noch nicht durch einen Peer-Review-Prozess

bestätigt ist, um so einen sehr aktuellen Stand der Forschung darstellen zu können.

Im Folgenden wird zuerst Literatur zu dem Thema NL2SQL im Kontext von Lehre dargestellt.

Das darauf folgende Unterkapitel beschäftigt sich mit der Bewertung des aktuellen Standes der

5

SQL-Generierung. Schließlich werden noch Ansätze vorgestellt, die das Ziel haben, NL2SQL

selbst zu verbessern.

NL2SQL in der Lehre
Da in dieser Arbeit insbesondere die Auswirkungen von NL2SQL auf die zukünftige Lehre

untersucht werden sollen, wurde gezielt nach Literatur zu diesem Thema gesucht.1 Dabei

wurden keine Arbeiten gefunden, die zu erwartende Veränderungen der erforderlichen

Kompetenzen von Studierenden oder zukünftig (noch) notwendige Lehrinhalte beschreiben.

Allerdings erwähnen einige Autoren (Dixit and Gajjam, 2024; Ganesan et al., 2024; Hong and

Storey, 2023; Taipalus and Seppänen, 2020) von nachfolgend dargestellten Arbeiten die

Wichtigkeit von SQL-Kenntnissen für Studierende, allerdings ohne speziell hierzu eine Studie

durchgeführt zu haben. Da sich diese Arbeiten jedoch mit dem generellen Thema „KI und

Datenbanken“ beschäftigen, impliziert dies, dass die Autoren diese Kenntnisse auch weiterhin

für erforderlich halten.

Zudem ergab die erwähnte Literatursuche sehr viele Veröffentlichungen, die sich mit dem

Lernen eines neuronalen Netzes bzw. eines LLMs mittels Trainingsdaten beschäftigen. Diese

Art des „Lernens“ ist im vorliegenden Kontext nicht relevant, weshalb entsprechende Arbeiten

im Folgenden nicht dargestellt werden.

Es wurden Arbeiten zu den nachfolgend beschriebenen Themen identifiziert:

(Taipalus and Seppänen, 2020) bietet einen ausführlichen Überblick über Arbeiten zum Thema

SQL-Ausbildung. Die Arbeit enthält jedoch keine Aussagen zu den Themen generative KI,

NL2SQL oder den durch diese Technologie resultierenden Auswirkungen auf erforderliche

SQL-Kenntnisse.

Einige Arbeiten beschäftigen sich mit dem Einsatz von KI oder generell von Softwarelösungen

beim Unterrichten von SQL:

(Prakash et al., 2024) verwendet nicht ausschließlich ein Standard-Produkt (wie z.B. ChatGPT)

zur Generierung von SQL-Abfragen, sondern schlägt hierfür eine speziell entwickelte

Architektur vor. Mit dieser können sich Studierende SQL-Abfragen generieren lassen. Sie

können aber auch selbst solche Abfragen erstellen und an das Tool übergeben. Dieses führt

sie dann aus und analysiert das Ergebnis. Ist letzteres falsch, werden den Studierenden

Quizfragen zum betroffenen Thema gestellt.

(Zhang, 2025) nutzt eine KI zur Generierung von SQL-Abfragen im Rahmen einer Lehrveran-

staltung. Dazu erhalten die Studierenden verschiedene Aufgaben (einschließlich dem Ändern

und Abfragen von Daten mittels SQL), welche sie selbst lösen sollen und zu denen sie sich

zusätzlich eine Lösung von der KI generieren lassen sollen. Die Studierenden lernen hierbei

unterschiedliche Vorgehensweisen kennen und können diese kritisch vergleichen.

(Carr et al., 2023) beschäftigt sich mit der Problemstellung, dass es schwierig ist, von

Studierenden erstellte SQL-Abfragen automatisch auf Korrektheit zu überprüfen, weil auch

korrekte SQL-Abfragen sehr stark von der Musterlösung abweichen können. Deshalb wird

ChatGPT verwendet, um weitere Lösungen für SQL-Abfragen aus den natürlichsprachlichen

1 Hierzu wurde eine Suche in Google-Scholar durchgeführt, wobei nach NL2SQL jeweils in Kombination

mit education, teaching, student, Lehre oder Unterricht gesucht wurde. Außerdem wurde nach „SQL
generation“ in Kombination mit einem der letzteren Begriffe gesucht. Schließlich wurde auch noch eine
Suche nach den Begriffen SQL education artificial intelligence durchgeführt.

6

Aufgabenstellungen zu generieren. Diese werden verwendet, um sie mit den Lösungen der

Studierenden zu vergleichen. In der Arbeit wurde erkannt, dass diese Vorgehensweise gute

Ergebnisse liefert, so dass sie in der Lehre eingesetzt werden kann.

(Hong and Storey, 2023) skizziert einen Ansatz, bei dem ChatGPT, zum Zweck der Lehre, u.a.

SQL-Statements generieren und den Studierenden die zugrunde liegende Idee erläutern soll.

Allerdings wird in dieser Arbeit ein erst kürzlich gestartetes Projekt beschrieben, so dass noch

keine fundierten Erkenntnisse vorliegen. So ist z.B. noch unklar, wie der Erfolg dieser

Vorgehensweise gemessen werden kann und wie sich die Rolle eines Lehrenden dadurch

verändert.

(Dixit and Gajjam, 2024) möchte das Lernen von SQL mittels des KI-Tools AI2SQL.io ver-

bessern. Dieses übernimmt die Rolle eines Tutors, indem es den Studierenden während ihrer

SQL-Übungen Feedback gibt. Diese Automatisierung erlaubt es (auch bei einer großen

Gruppengröße), für jede einzelne Übungsaufgabe sofort Feedback z.B. bzgl. Fehlern zu

geben. Es wird also ein individuelles Feedback möglich und zugleich der erforderliche Zeit-

aufwand für Lehrende reduziert.

Auch in (Matek et al., 2017) wird eine KI als Tutor eingesetzt. Diese generiert Hinweise auf

Basis von Lösungen, welche die Studierenden vorheriger Jahrgänge erstellt haben. Die

aktuellen Studierenden erstellen SQL-Abfragen (für dieselben Übungsaufgaben) und können

diese wahlweise ausführen oder die KI nach einem Hinweis fragen. Dieser besteht darin, dass

die aktuelle SQL-Abfrage von der KI angepasst wird. Diesen Hinweis können die Studierenden

benutzen oder aber auch ignorieren, um so zu einer korrekten Lösung zu gelangen.

Auch das in (Ganesan et al., 2024) vorgestellte Tool SQLearn prüft von Studierenden erstellte

SQL-Abfragen auf Korrektheit. Allerdings wird hierfür kein KI-basierter Ansatz verwendet,

sondern die Ähnlichkeit zu einer Referenz-Abfrage (der Musterlösung) wird automatisch

bewertet. Eine Einschränkung dieses Ansatzes im Vergleich zu den zuvor vorgestellten KI-

basierten Ansätzen ist deshalb, dass lediglich das Feedback „korrekt“, „falsch“ oder „teilweise

korrekt“ möglich ist.

(Steinberger and Wedam, 2025) stellt einen Ansatz vor, der es ermöglicht, mittels einer KI,

Material für Übungen automatisch zu generieren. Dieses umfasst Datenbanken mit Beispiel-

daten, Übungsaufgaben und Musterlösungen. Das Ziel dieses Ansatzes ist, den Arbeitsauf-

wand für Lehrende zu reduzieren. Einen ähnlichen Ansatz verfolgt (Zhang, 2025). Dort wird

vorgeschlagen, sich Unterrichtsmaterial, wie z.B. Quizfragen, Übungsaufgaben und Vor-

lesungsfolien von einer KI generieren zu lassen. Generell spart ein solches Vorgehen sicherlich

Aufwand ein, ist aber recht unabhängig von dem in diesem Bericht behandelten Thema SQL,

so dass auf andere ähnliche Ansätze hier nicht eingegangen wird.

(Farinetti and Cagliero, 2025) verwendet kein spezielles Tool, sondern die Studierenden sollten

direkt mit ChatGPT arbeiten: Sie sollen natürlichsprachliche Aufgabenstellungen entwickeln,

bei denen ChatGPT fehlerhafte Lösungen für die zugehörige SQL-Abfrage generiert. Außer-

dem erstellen die Studierenden selbst eine korrekte Lösung für die SQL-Abfragen. Ziele dieses

Experiments sind, dass sich Studierende mit komplizierten Abfragen beschäftigen (da die KI

bei solchen eher Fehler macht) und sie sich bewusst werden, dass die KI-generierten

Lösungen durchaus fehlerhaft sein können. Im durchgeführten Experiment waren in letzteren

sogar mehr Fehler als in den von den Studierenden manuell erstellten Lösungen. Insgesamt

7

soll der Gamification-Aspekt motivationssteigernd wirken, weshalb das Experiment auf diese

Art und Weise gestaltet wurde.

(Gaitantzi and Kazanidis, 2025) analysiert 31 Studien zum Thema KI-Unterstützung bei der

Lehre zum Thema Software-Entwicklung (und hierbei teilweise auch mit dem Thema SQL oder

zumindest Datenbanken). In den analysierten Studien wurden KI-Tools für die bereits

genannten Zwecke eingesetzt: zur Generierung von Programmcode (d.h. SQL-Abfragen), als

automatisierter Tutor und zur Generierung von Lehrmaterial. Die Studien erkennen einen

Nutzen durch die Verwendung von KI, z.B. weil (auch bei großen Gruppen) ein persönliches

sowie sofortiges Feedback möglich wird. Allerdings werden auch Probleme der Ansätze

benannt, wie z.B. Fehler im generierten Inhalt oder eine entstehende Abhängigkeit der

Studierenden von der KI.

Analyse der Fähigkeit zur Generierung von SQL-Abfragen
Im Folgenden werden Arbeiten vorgestellt, welche die heutige Qualität von NL2SQL bewerten.

Zu diesem Zweck existieren auch einige Benchmarks, die aus einer Sammlung von Beispiel-

tabellen und natürlichsprachlichen Abfragen an diese bestehen.

Kernaussage von (Floratou et al., 2024) ist, dass das Problem der SQL-Generierung (NL2SQL)

aktuell noch nicht gelöst ist. Die Arbeit benennt konkrete Probleme hierbei, wie z.B. sehr viele

Tabellen und Spalten in einer realistischen (d.h. praxisnahen) Datenbank. Hierzu wird als

Beispiel das Microsoft-interne Data-Warehouse für Finanzdaten mit 632 Tabellen und über

4000 Spalten (weitere in Views) vorgestellt. Ein solch komplexes Szenario ist für Lehr-Beispiele

und -Übungen natürlich nicht sinnvoll, zeigt jedoch, dass bei dem Thema noch viele ungelöste

Probleme bestehen. Zudem werden als weitere Schwierigkeiten in der Praxis genannt, dass

Abfragen in natürlicher Sprache oft nicht eindeutig sind und Endbenutzer die Semantik (d.h.

tatsächliche Bedeutung) der Tabellen und deren Spalten nicht kennen, was jedoch für eine

exakte Formulierung von natürlichsprachlichen Abfragen erforderlich ist. All dies führte in

dieser Arbeit zu einer durchschnittlichen Korrektheit von nur 22,7% bei der Generierung von

SQL-Abfragen.

Ähnliche Probleme werden auch in (Liu et al., 2025) und (Mohammadjafari et al., 2025)

genannt.

In (Nascimento et al., 2025) werden Experimente vorgestellt, die mit einer realen Datenbank

(d.h. aus der Praxis) durchgeführt wurden. Die mit GPT-4 generierten SQL-Abfragen waren

dabei nur zu 41% korrekt.

(Liu et al., 2023) untersucht die Qualität generierter SQL-Abfragen für den Fall, dass dem LLM

im Prompt keine besondere Unterstützung (z.B. durch Beispiele) gegeben wird (Zero-Shot).

ChatGPT erreichte bei diesen Tests eine Korrektheit von max. 76,6%, wobei diese allerdings

für andere Arten von Problemstellungen deutlich schlechter war. Das LLM, das bei dem Test

am besten abgeschnitten hat, erreichte 84,1% Korrektheit. Auffällig war, dass dieses seinen

besten Korrektheitswert bei anderen Problemstellungen erreichte als ChatGPT. Als generelle

Erkenntnis lässt sich festhalten, dass keine der LLMs eine nahezu absolute Korrektheit erreicht

hat.

(Sun et al., 2023) untersucht die Qualität generierter SQL-Abfragen für verschiedene LLMs,

wobei auch verschiedene Arten des Abbaus der Prompts berücksichtigt werden. Das beste

Ergebnis erziele hierbei ChatGPT 3.5, wobei die Korrektheit abhängig vom Prompt-Aufbau im

8

Intervall 31,1% bis 70,9% lag. Eine solche Abhängigkeit wurde auch für andere LLMs fest-

gestellt, wobei bei diesen teilweise ein anderer Prompt-Aufbau optimal war, als bei ChatGPT.

Auch (Campos et al., 2025) ermittelt mittels Experimenten die Korrektheit von generierten SQL-

Abfragen. Allerdings sind diese sehr einfach strukturiert, da die Datenbank aus nur einer

einzigen Tabelle besteht (mit jedoch sehr vielen Zeilen). Die ermittelte Korrektheit lag,

abhängig vom LLM-Modell, zwischen 10% und 96%, d.h. auch bei solch einfachen Abfragen

lässt sich keine absolute (d.h. sichere) Korrektheit erreichen. Um die Korrektheit zu messen,

wurde in einem ersten Schritt verglichen, ob die generierte Abfrage exakt der manuell erstellten

Soll-Abfrage entspricht. Falls dies nicht zutrifft, wurden in einem zweiten Schritt beide Abfragen

ausgeführt und die Ergebnisse auf Gleichheit geprüft. Ein solches Vorgehen ist natürlich nur

bei einer ausreichend großen Anzahl von Beispieldaten sinnvoll, weil sonst häufig der Fall

auftritt, dass die Ergebnisse einer (leicht) falschen Abfrage zufällig identisch sind.

In (Pornphol and Chittayasothorn, 2023) wird der spezielle Aspekt der Vollständigkeit unter-

sucht: Eine Datenbank-Abfragesprache gilt als vollständig, wenn sie mindestens die Mächtig-

keit der Relationenalgebra aufweist. Als Relationenalgebra wurden die von Codd in seiner

Originalpublikation vorgeschlagenen 8 Operationen definiert. Anhand von 5 Beispielen wurde

festgestellt, dass ChatGPT korrekte SQL-Abfragen erstellen kann, welche alle Operationen

abdecken. Dies lässt die Aussage zu, dass ChatGPT bzgl. der generierten SQL-Abfragen

vollständig ist.

Zur Bewertung von generierten SQL-Abfragen existieren verschiedene Benchmarks wie BIRD

(Li et al., 2023), Spider (Yu et al., 2019), UNITE (Lan et al., 2023), TrustSQL (Lee et al., 2024)

und TPC-DS (Poess and Floyd, 2000). Letzter umfasst Abfragen, die aus dem Bereich

„Decision-Making“ stammen und deshalb zu besonders komplexen SQL-Abfragen führen.

Dieser Benchmark wurde in (Ma et al., 2024) verwendet, um die Abfrage-Generierung von 11

LLMs zu bewerten. Das Ergebnis zeigt, dass hierbei selbst die besten LLMs lediglich eine

Korrektheit von 33% erreichen. (Lee et al., 2024) zeigt unter Verwendung des Benchmarks

TrustSQL, dass heutige NL2SQL-Methoden noch nicht zufriedenstellend funktionieren.

Die begrenzte Aussagekraft von Benchmarks wird in (Ganti et al., 2024) aufgezeigt, da in

Protokolldateien enthaltene reale Abfragen eine um ca. 30% geringere Korrektheit aufweisen,

als die Abfragen der Benchmarks. Als Gründe hierfür wurden Tabellen mit einer großen Anzahl

an Spalten, nicht eindeutige (aber realistische bzw. praxisnahe) Abfragen, sowie komplexe

oder verschachtelte resultierende SQL-Abfragen identifiziert.

(Kim et al., 2020) zeigt für mehrere Benchmarks und unterschiedliche LLMs die begrenzte

Aussagekraft der erzielten Ergebnisse auf. Die Bewertung der Korrektheit der generierten SQL-

Abfragen muss, wegen der großen Anzahl an ausgeführten Testfällen, normalerweise

automatisch erfolgen. Hierfür existieren unterschiedliche Methoden, die aber alle zu

Falschbewertungen führen können. Durch Experimente wird gezeigt, dass sich je nach

gewählter Methode deutliche Fehler ergeben, d.h. ein konkret angegebener Prozentsatz für die

Korrektheit sollte nicht „überinterpretiert“ werden.

Verbesserung von NL2SQL
Einige Ansätze verfolgen das Ziel, die Qualität von generierten SQL-Abfragen zu verbessern.

(Shi et al., 2024) bietet hierzu einen Überblick, der u.a. Ansätze zum Prompt-Engineering oder

Finetuning von Trainingsmethoden, -daten und zur Modellevaluation beinhaltet. Diese Ansätze

9

werden nicht durch Experimente verglichen, so dass keine unmittelbare Aussage zu deren

Leistungsfähigkeit gemacht wird. Stattdessen wird ein inhaltlicher Vergleich durchgeführt.

(Liu et al., 2025) bietet ebenfalls einen sehr umfassenden Überblick über Methoden zur SQL-

Generierung, wobei auch detailliert auf technische Aspekte von deren Umsetzung eingegangen

wird. Dies ist auch der Fokus von (Qin et al., 2022).

(Zhang et al., 2024) untersucht verschiedener Einzelaufgaben von NL2SQL in Bezug z.B. auf

Qualität und Ausführungsgeschwindigkeit der generierten SQL-Statements.

(Gao et al., 2023) betrachtet verschiedene Methoden zum Prompt-Engineering im Kontext der

SQL-Generierung. Auf dieser Basis wird eine „In-Context-Learning“-Methode für LLMs ent-

wickelt. Hierbei werden in dem Prompt einige Beispiele bereitgestellt, aus denen das LLM lernt.

Durch Experimente wird bestätigt, dass dies die Korrektheit der generierten SQL-Abfragen

verbessern kann.

In (Dong et al., 2023) wird eine Methode vorgestellt, die speziell Schwachstellen von ChatGPT

bei der Generierung von SQL-Abfragen beheben soll: Das Prompt wird auf eine vorgegebene

Weise strukturiert und dabei nur für diese Abfrage relevante Tabellen und Spalten angegeben

bzw. bzgl. ihrer Relevanz bewertet. Zusätzlich werden Hinweise bereitgestellt, z.B. welche

Spalten nicht benötigt werden, oder dass ein Left Outer Join nur verwendet werden soll, wenn

tatsächlich ein Outer Join benötigt wird. Schließlich werden mehrere SQL-Abfragen durch

ChatGPT generiert und ausgeführt, woraufhin die beste ausgewählt wird.

(Mohammadjafari et al., 2025) bewertet verschiedene NL2SQL-Ansätze bzgl. der Korrektheit

der erzeugten SQL-Statements und deren Effizienz (d.h. Ausführungsgeschwindigkeit und

notwendige Ressourcen). Als Ergebnis wird unter anderem die Verwendung von Knowledge-

Graphen empfohlen. Diese definieren die Beziehungen zwischen Entitäten, Tabellen und

Attributen und helfen bei der Generierung von SQL-Statements. Allerdings ist die Erstellung

eines solchen Knowledge-Graphen für den Benutzer eine aufwendige Aufgabe. Auch

(Nascimento et al., 2025) verwendet solche Graphen. Durch Experimente wurde bestätigt,

dass sich dadurch die Korrektheit der generierten SQL-Abfragen verbessern lässt. Allerdings

wurde dadurch und durch weitere Maßnahmen lediglich eine Korrektheit von 93% erreicht, d.h.

eine absolute Korrektheit der generierten Ergebnisse war nicht möglich.

Bei dem Ansatz von (Biswal et al., 2024) wird aus der Benutzeranfrage eine SQL-Query

generiert und ausgeführt. Zusätzlich zum Abfrageergebnis wird dann die natürlich-sprachige

Anfrage verwendet, um eine Antwort für den Benutzer zu generieren. Mit diesem Ansatz lassen

sich zusätzliche Typen von Benutzeranfragen beantworten.

(Bhaskar et al., 2023) untersucht Szenarien, in denen die für eine bestimmte Abfrage zu

generierende SQL-Abfrage nicht eindeutig ist. Dieser Fall kann z.B. aufgrund uneindeutiger

Namen von Tabellen oder Spalten sowie aufgrund verwirrender Beziehungen auftreten.

Idealerweise sollten dann alle möglicherweise gewünschten SQL-Abfragen generiert und dem

Benutzer bereitgestellt werden. Durchgeführte Tests ergaben jedoch, dass dies bei heutigen

LLMs nicht der Fall ist. Deswegen wurde in dieser Arbeit ein neuartiger Algorithmus entwickelt,

um diesen Fall besser handhaben zu können.

Fazit
Zusammenfassend lässt sich feststellen, dass die Problemstellung der Generierung von SQL-

Abfragen aktuell nicht gelöst ist. Daraus lässt sich schließen, dass es für Mitarbeiter aktuell

10

noch notwendig ist, korrekte SQL-Abfragen erstellen zu können. Die teilweise hohe Fehler-

quote bei NL2SQL lässt vermuten, dass dies auch noch längere Zeit gelten wird. Zumindest

müssen die Mitarbeiter weiterhin fähig sein, die generierten SQL-Abfragen auf ihre Korrektheit

hin zu überprüfen. Dies erfordert sehr ähnliche SQL-Kenntnisse, wie die Erstellung solcher

Abfragen. Deswegen ist es weiterhin erforderlich, dass SQL in Lehrveranstaltungen zum

Thema Datenbanken enthalten ist. Es konnte jedoch keine wissenschaftliche Literatur

identifiziert werden, die Aussagen zu diesem Thema machen, hier existiert also eine

Forschungslücke.

Die Ergebnisse von NL2SQL-Bewertungen mittels Benchmarks fallen sehr unterschiedlich aus.

Zudem wird in einigen Arbeiten betont, dass deren Aussagekraft begrenzt ist. Eine Bewertung

von LLMs mittels Benchmarks ist für die vorliegende Forschungsfrage ohnehin wenig hilfreich,

weil ein bestimmter Prozentsatz für die Korrektheit keine direkten Rückschlüsse auf erforder-

liche Lehrinhalte zulässt. Stattdessen sind solche Benchmarks eher nützlich, um neu ent-

wickelte Ansätze für NL2SQL bewerten und mit existierenden vergleichen zu können. Da eine

Entwicklung neuer Ansätze nicht unser Ziel ist, werden im Folgenden keine Benchmarks

verwendet.

Ansätze zur Verbesserung der generierten SQL-Abfragen, wie z.B. eine spezielle Prompt-

Gestaltung (z.B. In-Context-Learning) oder die Erstellung von Knowledge-Graphen sind zu

aufwendig, um in einer Vorlesung im Grundstudium behandelt zu werden. Aufgrund des

Aufwands kann vermutet werden, dass solche Verfahren von Studierenden wohl kaum genutzt

werden, wenn einige SQL-Abfragen z.B. im Rahmen einer Projektarbeit zu erstellen sind.

Ähnliches gibt wohl auch für Mitarbeiter in Unternehmen, die spontan eine einzelne oder einige

wenige SQL-Abfragen, z.B. zur Berechnung von Statistiken, erstellen sollen. Deswegen wird

auch dieses Thema hier nicht weiter verfolgt.

Wie bereits beim Thema Benchmarks erwähnt, ist die Verbesserung der internen Funktionalität

von LLMs bei der Generierung von SQL-Abfragen im Kontext von Lehre ebenfalls nicht

relevant.

Deshalb werden im Folgenden nur einige wenige Test mit unterschiedlichen LLMs durch-

geführt, die sich allerdings am Schwierigkeitsgrad von Aufgabenstellungen aus der Lehre

orientieren. Es ist dabei nicht das Ziel, die Korrektheit dieser LLMs so detailliert zu vergleichen,

dass sich die Ergebnisse verallgemeinern lassen würden. Stattdessen soll lediglich überprüft

werden, ob diese tatsächlich keine 100%ige Korrektheit für solch einfache Problemstellungen

erreichen.

Aufgabenstellungen für Datenbank-Vorlesungen
In diesem Abschnitt werden die Ergebnisse einiger Experimente vorgestellt. Hierbei ist das

Ziel, zu untersuchen, welche Ergebnisse Studierende erzielen werden, wenn sie sich ihre

Aufgabenstellungen (z.B. aus Projektarbeiten oder Prüfungen) von einer KI generieren lassen.

Deshalb wurde auch nicht versucht, speziell für SQL geeignete KI-Plattformen oder

Vorgehensweisen zu verwenden, da diese den Studierenden wohl nicht bekannt sind.

Stattdessen wurden die folgenden „populären“ (z.B. aus Medien bekannten) LLMs getestet:

1. Microsoft Copilot in der von der HNU lizensierten Version. Diese verwendete zum

Zeitpunkt der Tests ChatGPT in der Version GPT4

11

2. ChatGPT in der über openai.com öffentlich und kostenlos zugänglichen Version. Dies

war bei Durchführung der Experimente die Version GPT-4-turbo

3. DeepSeek in der Version V3

Auch der Schwierigkeitsgrad der Aufgabenstellungen und die Komplexität des zugrunde

liegenden Datenbank-Schemas orientieren sich an dem, was in einer (ersten) Vorlesung zum

Thema Datenbanken üblicherweise zu erwarten ist. Es sind also keine extrem komplexen

Abfragen zu erstellen und die Datenbank enthält nicht besonders viele Tabellen und Spalten.

Dementsprechend generieren die LLMs deutlich bessere Ergebnisse, als die in der Literatur

erwähnten, z.B. in einem realistischen betrieblichen Umfeld oder bei komplexen Benchmarks

(vgl. Abschnitt „Literaturanalyse“).

Verwendete Szenarien
Wie bereits erwähnt, soll die Komplexität der verwendeten Datenbanken dem entsprechen,

was in einer Vorlesung zum Thema Datenbanken zu erwarten ist. Im ersten Szenario werden

Kunden, sowie ihre Adressen, Bestellung, Rechnungen etc. gespeichert. Dieses stammt

(ebenso wie die Abfragen 1 bis 18, s.u.) aus einer Datenbankvorlesung, welche im 1. bzw. 2.

Semester in „Wirtschaftsinformatik-artigen“ Studiengängen an der HNU angeboten wird.

Abb. 1a zeigt das entsprechende Entity-Relationship-Diagramm (um die Bedeutung der Inhalte

ohne längere textuelle Erklärung verständlich zu machen). Abb. 1b stellt die daraus

resultierenden Datenbanktabellen als EER-Diagramm in MySQL-Workbench dar

(Primärschlüssel sind mit einem Schlüssel-Symbol markiert, Fremdschlüssel haben ein rotes

Symbol).

Das in diesen Vorlesungen verwendete Szenario enthält keine Entitätstypen, zwischen denen

es mehrere Beziehungen gibt. Außerdem ist keine (rekursive) Beziehung eines Entitätstyps mit

sich selbst enthalten. Dies schränkt die Menge an möglichen Aufgabenstellungen ein. Deshalb

wurden auch Experimente mit einem zweiten Szenario durchgeführt, in dem u.a. Mitarbeiter,

die Abteilung, in der sie arbeiten bzw. die sie leiten, sowie Standorte gespeichert werden.

Abb. 2a stellt das Szenario dieser Firmen-Datenbank wieder als Entity-Relationship-Diagramm

dar und Abb. 2b die Tabellen als EER-Diagramm. Dieses Szenario erlaubt komplexere Auf-

gabenstellungen, in welchen z.B. die Beziehungen „arbeitet in“ und „leitet“ gemeinsam oder so-

gar mehrfach benutzt werden müssen. Außerdem werden Abfragen möglich, welche Rekursion

erfordern (in SQL eine sog. Common Table Expression: CTE), z.B. um auch indirekte Vorge-

setzte zu berechnen. Solche Aufgabenstellungen und -arten sind für Datenbank-Vorlesungen

durchaus angemessen, allerdings eher in reinen Informatik-Studiengängen. Eine entsprechen-

de Komplexität von SQL-Abfragen ist auch in einem betrieblichen Umfeld selbst für Berufs-

einsteiger realistisch.

12

13

Durchführung der Experimente
Zur Beantwortung der Frage, ob Studierende bzw. Berufseinsteiger aktuell noch eigene SQL-

Kenntnisse benötigen, soll untersucht werden, ob KIs bereits in der Lage sind, SQL-Abfragen

völlig fehlerfrei zu generieren. Nur wenn dies der Fall ist, kann man sich „quasi blind“ (d.h. ohne

eigene Kompetenzen zum Thema SQL) auf ein generiertes Ergebnis verlassen. Dement-

sprechend ist irrelevant, ob eine generierte Abfrage für eine bestimmte Problemstellung in 99%

der Fälle korrekt ist, oder nur in 80% - die Studierenden müssen in beiden Fällen in der Lage

sein, eine generierte Abfrage zu überprüfen und ggf. selbst eine korrekte Abfrage zu erstellen.

Sie benötigen also tiefgehende SQL-Kenntnisse, d.h. dieses Thema muss weiterhin in

Datenbank-Vorlesungen gelehrt werden.

Da eine solche quantitative Bewertung der Qualität von generierten SQL-Abfragen also nicht

hilfreich ist, wurde auf einen großen „Stichprobenumfang“ verzichtet: Das bedeutet, für eine

Aufgabenstellung wurden nicht sehr viele Lösungen automatisch von der KI generiert und

diese ebenfalls automatisch auf Korrektheit geprüft, um so einen Prozentsatz für die Korrekt-

heit zu ermitteln. Stattdessen wurden die Lösungen (ähnlich wie bei der Korrektur einer

14

Klausur) vom Autor einzeln manuell geprüft. Diese Vorgehensweise wird als „manual matching“

bezeichnet. In (Kim et al., 2020) wird festgestellt, dass dies viel Aufwand erfordert, aber

Falschbewertungen vermeidet, die bei den anderen (automatisch durchführbaren) Bewertungs-

methoden auftreten können. Ein Nachteil ist, dass keine quantitativen Aussagen möglich sind,

welche aber (wie bereits diskutiert) in unserem Kontext auch nicht erforderlich sind.

Damit eine KI sinnvolle SQL-Abfragen generieren kann, müssen ihr die Namen der

zugrundeliegenden Tabellen und deren Spalten bekannt sein. Diese könnten prinzipiell mittels

eines „Prosa-Textes“ oder einer speziellen Syntax beschrieben werden. Hier wurde jedoch der

Ansatz gewählt, die CREATE-TABLE-Statements als SQL-Befehle zu verwenden. Gründe

hierfür sind, dass diese den Studierenden in Projektarbeiten üblicherweise ohnehin vorliegen,

so dass es naheliegend ist, dass auch sie diese im Prompt verwenden. Außerdem wird diese

Vorgehensweise vermutlich auch häufig in den Lerndaten der LLMs vorkommen, weil auch hier

diese SQL-Befehle ohnehin vorhanden sein werden. Ganz konkret wurde deshalb aus den

bereits erwähnten EER-Diagrammen durch MySQL-Workbench automatisch ein entsprechen-

des Skript generiert. Außerdem wurde davor und danach ein erklärender kurzer Text eingefügt,

um die Aufgabenstellung im Prompt zu verdeutlichen. Schließlich endet der Prompt mit der

konkreten Aufgabenstellung. Damit ergibt sich folgender Gesamtaufbau (wobei die CREATE-

TABLE-Statements für die weiteren Tabellen weggelassen wurden, um die Lesbarkeit zu

erhöhen):

Eine relationale Datenbank besteht aus folgenden als DDL beschriebenen Tabellen.

-- ---

-- Schema KundenDB

-- ---

CREATE SCHEMA IF NOT EXISTS `KundenDB` DEFAULT CHARACTER SET utf8 ;

USE `KundenDB` ;

-- ---

-- Table `KundenDB`.`Kunde`

-- ---

CREATE TABLE IF NOT EXISTS `KundenDB`.`Kunde` (

 `KundenNr` VARCHAR(18) NOT NULL,

 `Name` VARCHAR(60) NULL,

 `Umsatz` DECIMAL(12,2) NULL,

 PRIMARY KEY (`KundenNr`))

ENGINE = InnoDB;

-- ---

-- Table `KundenDB`.`Bestellung`

-- ---

CREATE TABLE …

Erstelle eine SQL-Anfrage für folgende Problemstellung.

Übersicht über die Bestellungen mit zugehörigen Detaildaten.

Auszugebende Ergebnisspalten: BestellNr, Kundenname, Anzahl Bestellpositionen, Preis des teuersten Artikels

15

Der Anhang A enthält eine Liste aller Aufgabenstellungen. Wie im obigen Beispiel sind hierbei

auch jeweils die auszugebenden Ergebnisspalten angegeben, weil sich diese nicht aus der

inhaltlichen Beschreibung der Aufgabenstellung ergeben (d.h. die SELECT-Klausel ist

ansonsten nicht eindeutig definiert). Die Aufgabenstellungen 1 bis 21 verwenden die in Abb. 1

dargestellte Kunden-Datenbank, ab der Nummer 22 wird die Firmen-Datenbank (vgl. Abb. 2)

verwendet. Wurde nicht sofort eine korrekte Lösung generiert, so wurde die entsprechende

Abfrage wiederholt ausgeführt.

Abb. 3 enthält eine Kurzbeschreibung der zu erwartenden Lösungen, die vollständigen

Lösungen sind als SQL-Statement in Anhang B dargestellt. Selbstverständlich existieren auch

andere korrekte Lösungen, wie z.B. die Verwendung einer Sub-Query anstatt einem INNER

bzw. OUTER JOIN (für Abfrage 13 sind im Anhang B exemplarisch drei unterschiedliche

Lösungen angegeben). Außerdem stellt Abb. 3 einen Überblick über die Abfrageergebnisse

dar. Die Beschriftungen „korrekt“ (dunkelgrün) bedeuten hierbei, dass das entsprechende LLM

sofort eine korrekte Lösung generiert hat. Diese Fälle sind für die weitere Analyse eher

uninteressant, so dass nicht weiter aus sie eingegangen wird. Alle anderen (d.h. zumindest

teilweise falschen) Lösungen werden im nächsten Unterabschnitt detailliert diskutiert.

Im Falle von „noch korrekt“ wurde die Lösung zwar als korrekt gewertet, aber mit Ein-

schränkungen. Dies betrifft z.B. Lösungen, in denen eine bestimmte Tabelle unnötigerweise

16

verwendet wurde oder weil (ohne dass dies so vorgegeben ist) angenommen wurde, dass

Einträge in der Tabelle IstBefreundetMit (vgl. Abb. 2b) „inhaltlich doppelt“ vorkommen (d.h.

etwa eine Zeile mit PersonalNr1 = 27 und PersonalNr1 = 88 sowie zusätzlich eine weitere Zeile

mit PersonalNr1 = 88 und PersonalNr1 = 27 – dies kann in einer Datenbank kann so realisiert

sein, dies muss aber nicht der Fall sein).

Als „teilweise“ korrekt wurden z.B. Lösungen gewertet, bei denen sich außer den korrekten

Ergebniszeilen auch falsche ergeben. So sind in Abfrage 26 die Standorte gefragt, an denen

Freunde von Peter Müller arbeiten. ChatGPT hat jedoch eine Lösung generiert, bei der außer

diesen auch der Standort von Peter Müller selbst im Ergebnis enthalten ist.

Bei Einträgen, die mit „manchmal“ beschriftet sind, hat das LLM zuerst eine falsche Lösung

generiert. Eine wiederholte Ausführung ergab dann allerdings ein korrektes SQL-Statement.

Hierbei wurde die Aufgabenstellung teilweise jedoch umformuliert, um die Verständlichkeit zu

verbessern.

Bei „falsch“ markierten Einträgen wurden auch im Wiederholungsfall falsche Lösungen

generiert.

Auffällige Einzelergebnisse

Im Folgenden wird auf alle nicht „perfekt gelösten“ Fälle eingegangen, d.h. auf diejenigen, die

in Abb. 3 nicht mit korrekt markiert sind. Außerdem werden einige sonstige Auffälligkeiten der

von den LLMs generierten Ergebnisse dargestellt.

Unzulängliche Lösungen

Die nicht fehlerfreien Lösungen sind im Folgenden geordnet nach LLM dargestellt (und nicht

nach Aufgabenstellung), da manche Aufgabenstellung nur von einem einzigen LLM falsch

gelöst wurden und sich zudem die Art der Fehler selbst bei derselben Aufgabenstellung bei

verschiedenen LLMs stark unterscheidet.

1. Microsoft Copilot (auf Basis ChatGPT in der Version GPT4)

Dieses Produkt hat die meisten völlig falschen SQL-Abfragen generiert. Im Folgenden wird

zusätzlich auf die teilweise oder geringfügig falschen Ergebnisse eingegangen. Um die

Übersichtlichkeit zu erhöhen ist dabei stets die jeweilige Aufgaben-Nummer (vgl. Abb. 3 sowie

Anhang A und B) sowie die Aufgabenstellung (in verkürzter Form) angegeben. Einige

Experimente sind dabei ausführlicher und in verschiedenen Varianten dargestellt, um das

Verhalten des LLM bei einem unterschiedlich detaillierten Prompt zu erläutern.

11. Der Kunde (oder die Kunden) mit dem größten Umsatz

Die ursprüngliche Aufgabenstellung lautete hier „Der Kunde mit dem größten Umsatz“. Hierfür

wurde die unten dargestellte Lösung generiert. Diese funktioniert zwar, aber nur wenn es exakt

einen einzigen Kunden mit diesem Maximalumsatz gibt. Das „LIMIT 1“ führt nämlich dazu, dass

nur eine Zeile ausgegeben wird. Durch die Sortierung ist das dann tatsächlich der Kunde mit

dem größten Umsatz – oder eben einer dieser Kunden, falls es mehrere solche gibt.

17

SELECT k.KundenNr, k.Name, k.Umsatz
FROM Kunde k
ORDER BY k.Umsatz DESC
LIMIT 1

Weil die LIMIT-Klausel nicht von allen Produkten unterstützt wird, wurde Copilot im Prompt

zudem aufgefordert, eine Lösung zu generieren, die auch in Microsoft Access funktioniert.

Daraufhin entstand die unten dargestellte Lösung (mit TOP 1 anstatt LIMIT 1), welche auch nur

einen einzigen Kunden ausgibt.
SELECT TOP 1 Kunde.KundenNr, Kunde.Name, Kunde.Umsatz
FROM Kunde
ORDER BY Kunde.Umsatz DESC

Nach einer Klarstellung der Aufgabenstellung („Der Kunde (oder die Kunden) mit …“, s.o.)

wurde eine korrekte Lösung generiert. Allerdings ist es für einen Benutzer des LLMs evtl. nicht

einfach, zu erkennen, dass die Aufgabenstellung nicht ideal formuliert war und deshalb eine

möglicherweise falsche Lösung entstanden ist.

16. Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 (kg) bestellt wurde.

Hierfür wurde folgende Lösung generiert (die Einrückungen wurden nachträglich eingefügt, um

die einzelnen SQL-Klauseln besser erkennbar zu machen). Die Aufgabenstellung wurde 5 mal

ausgeführt, wobei jedes Mal folgendes falsche Ergebnis generiert wurde:

SELECT b.BestellNr, b.Datum, b.KundenNr

FROM Bestellung b LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr AND a.Gewicht = 1715

WHERE a.ArtikelNr IS NULL

Um diese Aufgabenstellung zu lösen, sollte eigentlich eine Sub-Query verwendet werden (vgl.

Anhang B). Dies ist hier nicht der Fall. Die Lösung ist aus folgendem Grund falsch:

Angenommen eine Bestellung hat 2 Bestellpositionen (d.h. 2 Zeilen in der Tabelle BestellPos)

hat, mit den Artikeln A2 (mit 1715 kg) und A3 (mit einem anderen Gewicht). Wegen dem Artikel

A2 mit 1715 kg sollte diese Bestellung nicht im Ergebnis sein. Allerdings findet die Bestell-

position mit dem Artikel A3 keinen Join-Partner in der Tabelle Artikel, weil die Join-Bedingung

„a.Gewicht = 1715“ nicht erfüllt ist. Wegen dem OUTER JOIN werden die Felder aus der

Tabelle Artikel mit NULL-Werten aufgefüllt, so dass die WHERE-Klausel erfüllt ist und diese

Bestellung fälschlicherweise ausgegeben wird.

a. Variante: Bestellungen, in denen kein Artikel mit einem Gewicht über 1715 (kg) bestellt

wurde

Wird die Aufgabenstellung so modifiziert, dass (anstatt Artikel mit 1715 kg) solche mit einem

größeren Gewicht nicht bestellt werden dürfen, dann wird eine korrekte Lösung generiert. Dies

ist erstaunlich, weil sich der SQL-Befehl nur durch ein > anstatt einem = unterscheidet.

b. Zusätzliche Erklärung: Bestellungen, in denen kein Artikel mit einem Gewicht von 1715

(kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch ein Artikel

mit einem anderen Gewicht als 1715 bestellt wurde.

Diese Erklärung beschreibt den Fehlerfall der ursprünglichen Lösung. Trotzdem generiert

dieses LLM dieselbe falsche SQL-Abfrage.

c. Zusätzliche Erklärung und Beispiel: Bestellungen, in denen kein Artikel mit einem Gewicht

von 1715 (kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch

18

ein Artikel mit einem anderen Gewicht als 1715 bestellt wurde. Beispielsweise gehört eine

Bestellung für einen Artikel mit 1715 kg und einem Artikel mit 2000 kg nicht in das Ergebnis.

Hier wurde eine korrekte Lösung generiert. Jedoch erfordert sowohl die Erklärung als auch das

Beispiel große Kompetenzen bzgl. Erkennung des Fehlers und eines konkreten Problemfalls.

Es sind also sehr gute SQL-Kenntnisse erforderlich (vermutlich ist es einfacher, die SQL-

Anweisung selbst zu erstellen).

d. Weiteres erklärendes Beispiel: Bestellungen, in denen kein Artikel mit einem Gewicht von

1715 (kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch ein

Artikel mit einem anderen Gewicht als 1715 bestellt wurde. Beispielsweise gehört eine

Bestellung für einen Artikel mit 1715 kg und einem Artikel mit 2000 kg nicht in das Ergebnis.

Eine Bestellung ganz ohne Bestellpositionen (und damit Artikel) gehört hingegen schon in das

Ergebnis.

Daraufhin wurde eine korrekte Lösung generiert, die aber seltsamerweise ein GROUP BY und

HAVING verwendet, sowie ein nicht von allen Datenbank-Management-Systemen unterstütztes

CASE:

SELECT b.BestellNr, b.Datum, b.KundenNr

FROM Bestellung b LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr

GROUP BY b.BestellNr, b.Datum, b.KundenNr

HAVING SUM(CASE WHEN a.Gewicht = 1715 THEN 1 ELSE 0 END) = 0

18. Kunden, die die Zahlungsart Kreditkarte nie verwendet haben.

Dies führte zu einer falschen Lösung, weil die Bezeichnung Kreditkarte als ZahlArtNr

interpretiert wurde. Um die Aufgabenstellung eindeutiger zu machen, wurde sie wie folgt

abgewandelt:

Kunden, die die Zahlungsart mit der Bezeichnung Kreditkarte nie verwendet haben.

Eine korrekte Lösung sollte wieder eine Sub-Query verwenden. Die generierte Lösung war

falsch und hat wieder denselben Aufbau wie bei Aufgabenstellung 16:

SELECT k.KundenNr, k.Name

FROM Kunde k LEFT JOIN Verwendet v

ON k.KundenNr = v.KundenNr AND v.ZahlArtNr = 'Kreditkarte'

WHERE v.KundenNr IS NULL

Es wurde wieder untersucht, inwieweit zusätzliche Erklärungen und Beispiele hilfreich sind: Es

genügte bereits eine Erklärung (analog 16b), um eine korrekte Lösung zu erhalten. Dasselbe

gilt für Erklärung und Beispiel (analog 16c). Wenn zusätzlich ein dem Fall 16d entsprechender

Erklärungstext angegeben wird (… Ein Kunde ganz ohne Zahlungsarten hingegen schon),

dann entsteht wieder die oben dargestellte falsche Lösung. Diese Vorgehensweise beim

Erstellen eines Prompt ist also nicht zuverlässig.

19. Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.

Die Aufgabenstellung ist ähnlich zu Nr. 16, wobei jedoch ein zusätzlicher Join mit der Tabelle

Bestellung in der Sub-Query erforderlich ist. Außerdem muss die Tabelle Kunde verwendet

werden, weil diese die auszugebenden Spalten enthält. Diese Tabelle ist in der generierten

Lösung zwar vorhanden, aber ansonsten wurde derselbe Fehler wie bei Nr. 16 gemacht:

19

SELECT k.KundenNr, k.Name, k.Umsatz

FROM Kunde k LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr AND a.Gewicht = 1715

WHERE a.ArtikelNr IS NULL

20. Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)

bestellt haben.

Auch dies folgt demselben Muster, wobei zusätzlich ein Join in der Haupt-Query nötig ist (mit

der Tabelle Adresse). Die generierte Lösung enthält wieder denselben Fehler:

SELECT DISTINCT a.Strasse, a.HausNr, a.PLZ, a.Ort

FROM KundenDB.Adresse a JOIN KundenDB.Kunde k ON a.KundenNr = k.KundenNr

LEFT JOIN KundenDB.Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN KundenDB.BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN KundenDB.Artikel ar ON bp.ArtikelNr = ar.ArtikelNr AND ar.Gewicht = 1715

WHERE ar.ArtikelNr IS NULL

Auch die Aufgabenstellung 21 ist hierzu sehr ähnlich, wobei sogar 2 Join-Operationen in der

Haupt-Query nötig sind. Erstaunlicherweise wurde hierfür jedoch eine korrekte Lösung

generiert.

25. Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten

Hier wurde die nachfolgend angegebene Lösung generiert. Diese ist nur dann korrekt, wenn

alle Freundschaftsbeziehungen „doppelt“ in der Tabelle IstBefreundetMit gespeichert sind. Das

bedeutet, dass außer einer Zeile mit PersonalNr1 = X und PersonalNr2 = Y zusätzlich eine

Zeile mit PersonalNr1 = Y und PersonalNr2 = X vorhanden sein muss. Es ist zwar möglich,

diese Tabelle so zu befüllen, das muss aber nicht der Fall sein und war bei dem im Prompt

abgegebenen Schema auch nicht so vorgegeben. Deswegen wird diese Lösung lediglich als

„noch korrekt“ gewertet.

SELECT DISTINCT A.AbteilungsNr, A.Bezeichnung

FROM Abteilung A JOIN Mitarbeiter M ON A.AbteilungsNr = M.ArbeitetInAbteilungsNr

JOIN IstBefreundetMit B ON M.PersonalNr = B.PersonalNr2

JOIN Mitarbeiter P ON B.PersonalNr1 = P.PersonalNr

WHERE P.Vorname = 'Peter' AND P.Nachname = 'Müller'

27. Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Müller

Die hierfür generierte (nachfolgend dargestellte) Lösung funktioniert nicht. Korrekt realisiert ist,

dass m (Peter Müller) mit m1 befreundet ist. Die (letzten beiden) Join-Bedingungen

m1.PersonalNr = a.AbteilungsleiterPersonalNr und a.AbteilungsleiterPersonalNr =

m2.PersonalNr sorgen zusammen aber dafür, dass m1 und m2 identisch sind. Korrekt wäre,

die Abteilung zu ermitteln, in der m2 arbeitet (nicht: leitet). Deshalb müsste die erste dieser

Bedingungen m1.ArbeitetInAbteilungsNr = a.AbteilungsNr lauten (vgl. Anhang B).

20

SELECT DISTINCT a.AbteilungsleiterPersonalNr AS PersonalNr, m2.Vorname, m2.Nachname

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit f

ON m.PersonalNr = f.PersonalNr1 OR m.PersonalNr = f.PersonalNr2

 JOIN AbteilungsDB.Mitarbeiter m1

ON (m1.PersonalNr = f.PersonalNr1 OR m1.PersonalNr = f.PersonalNr2)

AND m1.PersonalNr != m.PersonalNr

 JOIN AbteilungsDB.Abteilung a ON m1.PersonalNr = a.AbteilungsleiterPersonalNr

 JOIN AbteilungsDB.Mitarbeiter m2 ON a.AbteilungsleiterPersonalNr = m2.PersonalNr

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller'

28. Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Müller

Die generierte Lösung ist nicht falsch. Sie ist allerdings sehr seltsam, weil nach dem Join mit

der Tabelle Mitarbeiter p keine Join-Bedingung folgt, die eine Verknüpfung mit einer anderen

Tabelle realisiert. Zudem wird die im Join davor angegebene Tabelle Abteilung a ansonsten

überhaupt nicht verwendet, so dass dieser Join unnötig ist und ersatzlos gestrichen werden

kann.

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM Mitarbeiter m JOIN Abteilung a ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr

JOIN Mitarbeiter p ON p.Nachname = 'Müller' AND p.Vorname = 'Peter'

JOIN IstBefreundetMit f ON (f.PersonalNr1 = p.PersonalNr

OR f.PersonalNr2 = p.PersonalNr)

JOIN Mitarbeiter mf ON (mf.PersonalNr = f.PersonalNr1

OR mf.PersonalNr = f.PersonalNr2) AND mf.PersonalNr != p.PersonalNr

WHERE m.ArbeitetInAbteilungsNr = mf.ArbeitetInAbteilungsNr

30. Die Abteilungen, in denen Vorgesetzte von Peter Müller arbeiten, auch indirekt Vorgesetzte

Hier wurde die unten dargestellte, inhaltlich falsche Abfrage generiert. Der rekursive Teil

ermittelt (korrekt) die Personalnummern von Mitarbeitern und ihren Vorgesetzten. Der Teil

danach ist jedoch falsch, weil wegen der Join-Bedingung a.AbteilungsleiterPersonalNr =

v.PersonalNr Abteilungen ausgegeben, die von einem (indirekten) Vorgesetzten von Peter

Müller geleitet werden. Es sind aber Abteilungen gesucht, in denen diese Personen arbeiten.

Hierzu müsste also das Attribut a.ArbeitetInAbteilungsNr verwendet werden. Damit dieses

verwendbar wird, wäre ein weiterer Join (mit der Tabelle Mitarbeiter) notwendig, d.h. dieser

fehlt in der vorgeschlagenen Lösung.

Zudem ist in v.PersonalNr auch Peter Müller selbst enthalten Es selbst ist in der Ausgabe aber

nicht zu berücksichtigen, sondern nur seine Vorgesetzten. Deshalb darf diese Spalte in der

letzten Join-Bedingung nicht verwendet werden, sondern es muss mit VorgesetzterPersonalNr

verglichen werden (für den Join mit der o.g. Tabelle Mitarbeiter).

Dieser Fehler ist (insb. für eher unerfahrene Studierende) vermutlich schwer zu finden, weil die

Abfrage syntaktisch korrekt ist und auf den ersten Blick plausibel klingt. Es ist aber etwas

anderes, dass eine Person (auch wenn sie Vorgesetzter ist) in einer Abteilung arbeitet, als

wenn diese Person sie leitet.

21

WITH RECURSIVE Vorgesetzte AS (

SELECT m.PersonalNr, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m

WHERE m.Nachname = 'Müller' AND m.Vorname = 'Peter'

UNION

SELECT m.PersonalNr, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m INNER JOIN Vorgesetzte v

ON m.PersonalNr = v.VorgesetzterPersonalNr

)

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung

FROM AbteilungsDB.Abteilung a JOIN Vorgesetzte v

ON a.AbteilungsleiterPersonalNr = v.PersonalNr

31. Die Abteilungen und die Standorte an denen Vorgesetzte von Peter Müller arbeiten, auch

indirekt Vorgesetzte

Hier wurde derselbe Fehler gemacht, wie bei der vorherigen Aufgabenstellung, d.h. die letzte

Join-Bedingung enthält wieder beide bereits beschriebenen Fehler.

WITH RECURSIVE Vorgesetzte AS (

SELECT m.PersonalNr, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller'

UNION ALL

SELECT m.PersonalNr, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m

INNER JOIN Vorgesetzte v ON m.PersonalNr = v.VorgesetzterPersonalNr

)

SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname

FROM AbteilungsDB.Abteilung a INNER JOIN AbteilungsDB.Standort s

ON a.StandortNr = s.StandortNr

INNER JOIN Vorgesetzte v ON a.AbteilungsleiterPersonalNr = v.PersonalNr

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind

Die generierte Lösung enthält einen eher kleinen Fehler: Der Mitarbeiter m ist mit pm

befreundet (dem Vorgesetzten von Peter Müller). Jedoch kann auch m = pm sein (z.B. falls bei

beiden OR-Bedingungen die PersonalNr1 verwendet wird). Also werden nicht nur Freunde des

Vorgesetzten, sondern auch dieser Vorgesetzte selbst ausgegeben. In der SQL-Abfrage fehlt

die im Anhang B mit AND verknüpfte Bedingung, die dafür sorgt, dass die PersonalNr von m

und pm unterschiedlich sind.

SELECT DISTINCT a.AbteilungsleiterPersonalNr AS PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON a.AbteilungsleiterPersonalNr = m.PersonalNr

JOIN AbteilungsDB.IstBefreundetMit ib ON m.PersonalNr = ib.PersonalNr1

OR m.PersonalNr = ib.PersonalNr2

JOIN AbteilungsDB.Mitarbeiter pm ON (ib.PersonalNr1 = pm.PersonalNr

OR ib.PersonalNr2 = pm.PersonalNr)

22

WHERE pm.PersonalNr IN (

 SELECT VorgesetzterPersonalNr

 FROM AbteilungsDB.Mitarbeiter

 WHERE Vorname = 'Peter' AND Nachname = 'Müller')

33. Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Müller befreundet sind

Hier ist die generierte Lösung falsch: Wegen 1. Join-Bedingung ist a1 die Abteilung, die Peter

Müller (m1) leitet. Dass er Abteilungsleiter ist, wird in der Aufgabenstellung jedoch gar nicht

gefordert, sondern es geht um die Abteilung, in der er arbeitet. Deshalb müsste (anstatt der

PersonalNr) die AbteilungsNr in der Join-Bedingung verwendet werden, also die Bedingung

m1.ArbeitetInAbteilungsNr = a1.AbteilungsNr.

SELECT DISTINCT m2.PersonalNr, m2.Vorname, m2.Nachname

FROM AbteilungsDB.Mitarbeiter m1 JOIN AbteilungsDB.Abteilung a1

ON m1.PersonalNr = a1.AbteilungsleiterPersonalNr

JOIN AbteilungsDB.IstBefreundetMit b

ON a1.AbteilungsleiterPersonalNr = b.PersonalNr1

OR a1.AbteilungsleiterPersonalNr = b.PersonalNr2

JOIN AbteilungsDB.Abteilung a2

ON (b.PersonalNr1 = a2.AbteilungsleiterPersonalNr

OR b.PersonalNr2 = a2.AbteilungsleiterPersonalNr)

AND a2.AbteilungsleiterPersonalNr != a1.AbteilungsleiterPersonalNr

JOIN AbteilungsDB.Mitarbeiter m2 ON a2.AbteilungsleiterPersonalNr = m2.PersonalNr

WHERE m1.Vorname = 'Peter' AND m1.Nachname = 'Müller'

2. ChatGPT (GPT-4-turbo)

Im Folgenden sind die nicht vollständig korrekt generierten SQL-Abfragen von ChatGPT

dargestellt. Dabei ist zu beachten, dass mit GPT-4-turbo eine andere Version des LLMs

zugrunde liegt als bei den zuvor dargestellten Lösungen von Microsoft Copilot.

4. Alle Bestellungen sortiert nach BestellNr, aber nur Bestellungen, für die (noch) keine

Rechnung existiert

Hier wurde die die Sortierung vergessen:

SELECT b.BestellNr, b.Datum AS 'Bestell-Datum'

FROM Bestellung b LEFT JOIN Rechnung r ON b.BestellNr = r.BestellNr

WHERE r.RechnNr IS NULL

Bei der Wiederholung des Tests wurde jedoch eine korrekte Lösung generiert, d.h. die

ORDER-BY-Klausel ist vorhanden.

11. Der Kunde (oder die Kunden) mit dem größten Umsatz

Ebenso wie Microsoft Copilot wurde mit der ursprünglichen Aufgabenstellung („Der Kunde mit

…“) eine Lösung generiert, die nur funktioniert, wenn es nur einen einzigen solchen Kunden

gibt. Grund ist wieder das „LIMIT 1“, aufgrund dessen nur eine Zeile ausgegeben wird.

SELECT k.KundenNr, k.Name, k.Umsatz

FROM Kunde k

ORDER BY k.Umsatz DESC

LIMIT 1

Die Klarstellung der Aufgabenstellung führte auch hier zu einer korrekten Lösung.

23

21. Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)

bestellt haben

Die nachfolgend dargestellte generierte Lösung enthält in der Sub-Query einen unnötigen Join

mit der Tabelle Kunde, weil das zurückgegebene Attribut KundenNr ist auch in der Tabelle

Bestellung enthalten ist.

In der Haupt-Query werden Joins mit den Tabellen Bestellung, BestellPos und Artikel

durchgeführt. Dies führt zu einem unvollständigen (d.h. falschen) Ergebnis, weil dann Kunden

(und damit deren Zahlungsarten) nicht berücksichtigt werden, denen gar keine Bestellung,

BestellPos oder Artikel zugeordnet sind. Die Zahlungsarten solcher Kunden gehören jedoch in

das Ergebnis, weil z.B. Kunden ohne eine Bestellung sicher keinen Artikel mit 1715 kg Gewicht

bestellt haben.

SELECT DISTINCT Z.ZahlArtNr, Z.Bezeichnung

FROM KundenDB.Zahlungsart Z JOIN KundenDB.Verwendet V ON Z.ZahlArtNr = V.ZahlArtNr

JOIN KundenDB.Kunde K ON V.KundenNr = K.KundenNr

JOIN KundenDB.Bestellung B ON K.KundenNr = B.KundenNr

JOIN KundenDB.BestellPos BP ON B.BestellNr = BP.BestellNr

JOIN KundenDB.Artikel A ON BP.ArtikelNr = A.ArtikelNr

WHERE K.KundenNr NOT IN (

SELECT DISTINCT K2.KundenNr

FROM KundenDB.Kunde K2 JOIN KundenDB.Bestellung B2

ON K2.KundenNr = B2.KundenNr

JOIN KundenDB.BestellPos BP2 ON B2.BestellNr = BP2.BestellNr

JOIN KundenDB.Artikel A2 ON BP2.ArtikelNr = A2.ArtikelNr

WHERE A2.Gewicht = 1715)

a. Zusätzliche Erklärung: Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem

Gewicht von 1715 (kg) bestellt haben. Achtung: Zahlungsarten von Kunden, die gar keine

Bestellung oder eine Bestellung ohne Bestellpositionen haben, gehören in das Ergebnis, weil

diese Kunden dann ja keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.

Ebenso wie beim Copilot wurde getestet, ob der eben beschriebene Fehler durch obigen

Erklärungstext vermieden werden kann. Dies führte jedoch zu der nachfolgend dargestellten

falschen SQL-Abfrage. Diese berücksichtigt auch Kunden, die irgendeinen Artikel mit einem

anderen Gewicht als 1715 bestellt haben, auch wenn sie zusätzlich einen Artikel mit 1715 kg

bestellt haben – also eigentlich explizit aus dem Ergebnis ausgeschlossen werden sollen.

SELECT DISTINCT z.ZahlArtNr, z.Bezeichnung

FROM Zahlungsart z JOIN Verwendet v ON z.ZahlArtNr = v.ZahlArtNr

LEFT JOIN Kunde k ON v.KundenNr = k.KundenNr

LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr

WHERE (a.Gewicht IS NULL OR a.Gewicht <> 1715)

b. Zusätzliche Erklärung und Beispiel: Die Zahlungsarten derjenigen Kunden, die keinen

Artikel mit einem Gewicht von 1715 (kg) bestellt haben. Achtung: Zahlungsarten von Kunden,

die gar keine Bestellung oder eine Bestellung ohne Bestellpositionen haben, gehören in das

Ergebnis, weil diese Kunden dann ja keinen Artikel mit einem Gewicht von 1715 (kg) bestellt

24

haben. Kunden, die Artikel mit einem anderen Gewicht und zusätzlich Artikel mit 1715 (kg)

bestellt haben, dürfen nicht berücksichtigt werden.

Damit wurde ein korrektes Ergebnis generiert. Jedoch muss wieder festgestellt werden, das die

Fehlererkennung und geeignete Formulierung von Erklärungen und Beispielen schwierig ist

und unerfahrene Anwender vermutlich überfordert.

SELECT DISTINCT z.ZahlArtNr, z.Bezeichnung

FROM Zahlungsart z JOIN Verwendet v ON z.ZahlArtNr = v.ZahlArtNr

JOIN Kunde k ON v.KundenNr = k.KundenNr

WHERE k.KundenNr NOT IN (

SELECT DISTINCT b.KundenNr

FROM Bestellung b JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr

WHERE a.Gewicht = 1715)

24. Alle Abteilungen, die Freunde des Mitarbeiters Peter Müller leiten

Die generierte Lösung ist wegen der letzten Join-Bedingung A.AbteilungsleiterPersonalNr =

M.PersonalNr falsch: Aufgrund der WHERE-Klausel ist M = Peter Müller. Durch die erwähnte

Join-Bedingung ist er Abteilungsleiter der Abteilung a. Es wird also die von ihm geleitete

Abteilung ausgegeben – Aufgabenstellung war jedoch, Abteilungen zu ermitteln, die seine

Freunde leiten. Für eine korrekte Lösung hätte in der letzten Join-Bedingung (anstatt M.)

IFM.PersonalNr1/2 verwendet werden müssen.

SELECT A.AbteilungsNr, A.Bezeichnung

FROM AbteilungsDB.Mitarbeiter M JOIN AbteilungsDB.IstBefreundetMit IFM

ON M.PersonalNr = IFM.PersonalNr1 OR M.PersonalNr = IFM.PersonalNr2

JOIN AbteilungsDB.Abteilung A ON A.AbteilungsleiterPersonalNr = M.PersonalNr

WHERE (M.Vorname = 'Peter' AND M.Nachname = 'Müller')

Die Wiederholung des Tests führte zu einer fast richtigen Lösung. Diese unten dargestellte

SQL-Abfrage führt 2 Joins mit der Tabelle Mitarbeiter durch (als m und p). Dies ist nicht falsch,

aber unnötig (vgl. Anhang B).

In den Join-Bedingungen fehlt jedoch eine Bedingung, die verhindert, dass Peter Müller (p) als

sein eigener Freund (m, der Abteilungsleiter) betrachtet wird (z.B., weil in beiden mit OR

verknüpften Join-Bedingungen ibm.PersonalNr1 verwendet wird). Die Lösung ist also nur

teilweise korrekt.

SELECT a.AbteilungsNr, a.Bezeichnung

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON a.AbteilungsleiterPersonalNr = m.PersonalNr

JOIN AbteilungsDB.IstBefreundetMit ibm ON (m.PersonalNr = ibm.PersonalNr1

OR m.PersonalNr = ibm.PersonalNr2)

JOIN AbteilungsDB.Mitarbeiter p ON (ibm.PersonalNr1 = p.PersonalNr

OR ibm.PersonalNr2 = p.PersonalNr)

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

25. Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten

Hier wurde derselbe Fehler gemacht, wie bei der vorherigen Aufgabe. d.h. Peter Müller erfüllt

selbst die Join-Bedingungen: Da eine entsprechende Bedingung fehlt (vgl. AND in Anhang B),

25

kann er außer p auch m sein, so dass fälschlicherweise auch die Abteilung ausgegeben wird,

in der Peter Müller selbst arbeitet – auch wenn dort kein Freund von ihm arbeitet.

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr

JOIN AbteilungsDB.IstBefreundetMit bf ON (bf.PersonalNr1 = m.PersonalNr

OR bf.PersonalNr2 = m.PersonalNr)

JOIN AbteilungsDB.Mitarbeiter p ON (p.PersonalNr = bf.PersonalNr1

OR p.PersonalNr = bf.PersonalNr2)

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

26. Die Standorte von Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten

Hier sind die Join-Bedingungen unsinnig. Es wird zwar ein Join der Tabelle m (Peter Müller) mit

IstBefreundetMit (ibm) durchgeführt, aber ibm ansonsten nicht verwendet. Stattdessen bewirkt

die Bedingung a.AbteilungsNr = m.ArbeitetInAbteilungsNr, dass a die Abteilung ist, in der Peter

Müller arbeitet, so dass sein eigener Standort ausgegeben wird.

SELECT DISTINCT s.StandortNr, s.Ortsname

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm

ON m.PersonalNr = ibm.PersonalNr1

OR m.PersonalNr = ibm.PersonalNr2

JOIN AbteilungsDB.Abteilung a ON (a.AbteilungsNr = m.ArbeitetInAbteilungsNr)

JOIN AbteilungsDB.Standort s ON s.StandortNr = a.StandortNr

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller'

Die Wiederholung des Tests führte zu einer korrekten Lösung. Wie nachfolgend dargestellt,

enthält diese jedoch ein CASE-Konstrukt, das nicht von allen Datenbanksystemen unterstützt

wird.

SELECT DISTINCT s.StandortNr, s.Ortsname

FROM Mitarbeiter peter JOIN IstBefreundetMit f

ON peter.PersonalNr = f.PersonalNr1 OR peter.PersonalNr = f.PersonalNr2

JOIN Mitarbeiter freund

ON freund.PersonalNr = CASE

 WHEN f.PersonalNr1 = peter.PersonalNr THEN f.PersonalNr2

 ELSE f.PersonalNr1

 END

JOIN Abteilung a ON freund.ArbeitetInAbteilungsNr = a.AbteilungsNr

JOIN Standort s ON a.StandortNr = s.StandortNr

WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Müller'

28. Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Müller

Die generierte Abfrage ist falsch, weil der Mitarbeiter m ausgegeben wird. Dieser ist wegen den

ersten beiden Join-Bedingungen mit Peter Müller (pm) befreundet. Es sollen aber nicht seine

Freunde ausgegeben werden, sondern deren Abteilungskollegen.

Die 1. Bedingung in der WHERE-Klausel führt dazu, dass pm = Peter Müller ist. Eine weitere

WHERE-Klausel in der Sub-Query mit derselben Bedingung ist unsinnig.

26

SELECT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm

ON m.PersonalNr = ibm.PersonalNr1 OR m.PersonalNr = ibm.PersonalNr2

JOIN AbteilungsDB.Mitarbeiter pm

ON (ibm.PersonalNr1 = pm.PersonalNr OR ibm.PersonalNr2 = pm.PersonalNr)

WHERE pm.Vorname = 'Peter' AND pm.Nachname = 'Müller'

AND m.ArbeitetInAbteilungsNr = (SELECT ArbeitenInAbteilungsNr

 FROM AbteilungsDB.Mitarbeiter

 WHERE Vorname = 'Peter' AND Nachname = 'Müller')

AND m.PersonalNr != pm.PersonalNr

Eine wiederholte Ausführung führte zu einer anderen falschen Lösung: Der ausgegebene

Mitarbeiter m ist wegen der ersten beiden Join-Bedingungen mit peter (d.h. Peter Müller)

befreundet. Die Aufgabenstellung „derselben Abteilung“ wird also nicht erfüllt, der letzte Join

ändert daran nichts, weil die Tabelle Abteilung (a) ansonsten nicht verwendet wird.

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm

ON m.PersonalNr = ibm.PersonalNr1 OR m.PersonalNr = ibm.PersonalNr2

JOIN AbteilungsDB.Mitarbeiter peter ON (ibm.PersonalNr1 = peter.PersonalNr

OR ibm.PersonalNr2 = peter.PersonalNr)

JOIN AbteilungsDB.Abteilung a ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr

WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Müller'

AND m.PersonalNr != peter.PersonalNr

29. Alle Vorgesetzten von Peter Müller, auch indirekt Vorgesetzte

Die generierte Lösung enthält mehrere kleinere Fehler. So ist REKURSIVE mit K statt C

geschrieben, weswegen die SQL-Abfrage syntaktisch falsch und damit nicht ausführbar ist.

Ein inhaltlicher Fehler ist, dass im 1. und 2. SELECT die Spalte VorgesetzterPersonalNr fehlt.

Deshalb ist die 1. Join-Bedingung falsch, weil es die Spalte VorgesetzterPersonalNr in der

Tabelle Vorgesetzte (v) gar nicht gibt.

Schließlich ist die Sub-Query eine sehr umständliche Lösung. Es wäre viel einfacher, Peter

Müller direkt aufgrund seines Namens in der Tabelle v auszuschließen.

WITH REKURSIVE Vorgesetzte AS (

-- Basis: Peter Müller ist der Startpunkt

SELECT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter m

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller'

 UNION ALL

-- Rekursion: Vorgesetzte der gefundenen Personen

SELECT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter m JOIN Vorgesetzte v

ON m.PersonalNr = v.VorgesetzterPersonalNr

)

27

-- Auswahl der endgültigen Vorgesetzten

SELECT DISTINCT v.PersonalNr, v.Vorname, v.Nachname

FROM Vorgesetzte v

WHERE v.PersonalNr != (SELECT PersonalNr

FROM AbteilungsDB.Mitarbeiter

WHERE Vorname = 'Peter' AND Nachname = 'Müller')

Eine Wiederholung des Tests führte zu folgender korrekten Lösung:

WITH RECURSIVE Vorgesetzte AS (

-- Start mit Peter Müller, um seine direkten Vorgesetzten zu finden

SELECT PersonalNr, Vorname, Nachname, VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter

WHERE Vorname = 'Peter' AND Nachname = 'Müller'

 UNION ALL

-- Rekursive Abfrage: alle Vorgesetzten der bereits gefundenen Vorgesetzten

SELECT m.PersonalNr, m.Vorname, m.Nachname, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m INNER JOIN Vorgesetzte v

ON m.PersonalNr = v.VorgesetzterPersonalNr

)

SELECT PersonalNr, Vorname, Nachname

FROM Vorgesetzte

Bei einem 3. Test fehlte wieder die Spalte VorgesetzterPersonalNr (wie beim 1. Test), aber

zumindest RECURSIVE war korrekt geschrieben.

30. Die Abteilungen, in denen Vorgesetzte von Peter Müller arbeiten, auch indirekt Vorgesetzte

Hier wurde eine falsche Lösung generiert, in der die indirekten Vorgesetzte fehlen, weil gar

keine Rekursion (CTE) in der Abfrage genutzt wird.

Zudem ist der Mitarbeiter v (Peter Müller) der Vorgesetzte der Mitarbeiter m

(m.VorgesetzterPersonalNr = v.PersonalNr), deren Abteilungen ausgegeben werden. Korrekt

wäre jedoch, die Abteilungen der Vorgesetzten auszugeben, und nicht die der Untergeordneten

von Peter Müller.

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON a.AbteilungsNr = m.ArbeitetInAbteilungsNr

JOIN AbteilungsDB.Mitarbeiter v ON m.VorgesetzterPersonalNr = v.PersonalNr

WHERE v.Vorname = 'Peter' AND v.Nachname = 'Müller'

Die Wiederholung des Tests führte wieder zu einer Abfrage ohne Rekursion (CTE). Jedoch

werden jetzt genau 2 Stufen der Vorgesetztenbeziehung verwendet, d.h. der direkte

Vorgesetzte und alle Vorgesetzten ab der Stufe 3 fehlen. Außerdem wurde Peter Meier wieder

als Vorgesetzter verwendet und nicht als Untergeordneter.

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr

JOIN AbteilungsDB.Mitarbeiter v1 ON v1.PersonalNr = m.VorgesetzterPersonalNr

JOIN AbteilungsDB.Mitarbeiter v2 ON v2.PersonalNr = v1.VorgesetzterPersonalNr

WHERE v2.Vorname = 'Peter' AND v2.Nachname = 'Müller'

28

31. Die Abteilungen und die Standorte an denen Vorgesetzte von Peter Müller arbeiten, auch

indirekt Vorgesetzte

Hier verhielt sich ChatGPT sehr seltsam, weil es keine eindeutige Antwort lieferte, sondern die

nachfolgend dargestellten beiden „Reaktionen“. Dabei ist die Reaktion 1 korrekt. Die

Reaktion 2 ist falsch, weil die Spalte AbteilungsleiterPersonalNr (in der WHERE-Klausel)

verwendet wird, d.h. es werden die Abteilungsleiter der Vorgesetzten berücksichtigt, nicht die

Vorgesetzten selbst.

Reaktion 1

WITH RECURSIVE Vorgesetzte AS (

-- Starte mit dem direkten Vorgesetzten von Peter Müller

SELECT m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller'

UNION ALL

-- Rekursive Suche nach allen indirekten Vorgesetzten

SELECT m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m JOIN Vorgesetzte v

ON m.PersonalNr = v.VorgesetzterPersonalNr

)

SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.Abteilung a

ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr

JOIN AbteilungsDB.Standort s ON a.StandortNr = s.StandortNr

WHERE m.PersonalNr IN (SELECT VorgesetzterPersonalNr FROM Vorgesetzte)

Reaktion 2

WITH RECURSIVE Vorgesetzte AS (

-- Basisfall: Direkter Vorgesetzter von Peter Müller

SELECT m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter AS m

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller'

 UNION

-- Rekursiver Fall: Finde alle indirekten Vorgesetzten

SELECT m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter AS m

INNER JOIN Vorgesetzte v ON m.PersonalNr = v.VorgesetzterPersonalNr

)

SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname

FROM AbteilungsDB.Abteilung AS a JOIN AbteilungsDB.Standort AS s

ON a.StandortNr = s.StandortNr

WHERE a.AbteilungsleiterPersonalNr IN (SELECT VorgesetzterPersonalNr

FROM Vorgesetzte)

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind

Die generierte Lösung ist fast korrekt, wobei zusätzlich Vorgesetzte von Peter Müller berück-

sichtigt werden. Gewünscht war jedoch nur die Ausgabe der Abteilungsleiter von dessen

29

Freunden. Grund für den Fehler ist, dass (ähnlich wie bei der Aufgabenstellung 25) die

Bedingung fehlt, dass die Mitarbeiter m und v nicht identisch sein dürfen (vgl. AND in

Anhang B).

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter AS m JOIN AbteilungsDB.Abteilung AS a

ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN AbteilungsDB.IstBefreundetMit AS ib

ON m.PersonalNr = ib.PersonalNr1 OR m.PersonalNr = ib.PersonalNr2

JOIN AbteilungsDB.Mitarbeiter AS v

ON (ib.PersonalNr1 = v.PersonalNr OR ib.PersonalNr2 = v.PersonalNr)

WHERE v.PersonalNr IN (

SELECT VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter

WHERE Vorname = 'Peter' AND Nachname = 'Müller')

3. DeepSeek (Version V3)

Dieses LLM hat in den durchgeführten Tests die meisten bereits beim ersten Versuch völlig

korrekten Lösungen generiert. Bei falschen Lösungen führte eine Wiederholung des Tests

schließlich zumindest zu einer teilweise (d.h. fast) korrekten Lösung.

11. Der Kunde (oder die Kunden) mit dem größten Umsatz

Auch hier wurde bei der ursprünglichen Aufgabenstellung („Der Kunde mit …“) eine Abfrage

mit „LIMIT 1“ generiert (s.u.), die nur eine einzige Zeile ausgibt. Dieser Mangel war nach der

Klarstellung der Aufgabenstellung verschwunden.

SELECT KundenNr, Name, Umsatz

FROM Kunde

ORDER BY Umsatz DESC

LIMIT 1

20. Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)

bestellt haben

Die generierte Lösung ist zwar korrekt, verwendet jedoch unnötigerweise die Tabelle Kunde in

der Sub-Query. Da die KundenNr auch in der Tabelle Bestellung enthalten ist (b.KundenNr,

vgl. Join-Bedingung), könnte auch diese von der Sub-Query zurückgegeben werden.

SELECT DISTINCT a.Strasse, a.HausNr AS HNr, a.PLZ, a.Ort

FROM KundenDB.Adresse a JOIN KundenDB.Kunde k ON a.KundenNr = k.KundenNr

WHERE k.KundenNr NOT IN (

SELECT DISTINCT k.KundenNr

FROM KundenDB.Kunde k JOIN KundenDB.Bestellung b ON k.KundenNr = b.KundenNr

JOIN KundenDB.BestellPos bp ON b.BestellNr = bp.BestellNr

JOIN KundenDB.Artikel ar ON bp.ArtikelNr = ar.ArtikelNr

WHERE ar.Gewicht = 1715)

24. Alle Abteilungen, die Freunde des Mitarbeiters Peter Müller leiten

Wie z.B. bereits bei der Aufgabenstellung 25 beim Microsoft Copilot beschrieben, ist die unten

dargestellte Lösung nur dann korrekt, wenn alle Freundschaftsbeziehungen „doppelt“ in der

30

Tabelle IstBefreundetMit eingetragen sind (was aber so nicht vorgegeben war). Die generierte

Lösung wurde deshalb wieder nur als „noch korrekt“ gewertet.

SELECT A.AbteilungsNr, A.Bezeichnung

FROM Abteilung A JOIN Mitarbeiter M ON A.AbteilungsleiterPersonalNr = M.PersonalNr

JOIN IstBefreundetMit F ON M.PersonalNr = F.PersonalNr2

JOIN Mitarbeiter PM ON F.PersonalNr1 = PM.PersonalNr

WHERE PM.Vorname = 'Peter' AND PM.Nachname = 'Müller'

Bei den nächsten beiden Aufgabenstellungen wurde jeweils eine Lösung generiert, bei der

dieser Fehler vermieden wurde (obwohl die Aufgabenstellungen teilweise komplizierter sind).

Es existiert also keine „Zuverlässigkeit“ bzgl. der Qualität der generierten SQL-Abfragen.

27. Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Müller

Die generierte Lösung ist wegen der verschachtelten Sub-Queries recht verwirrend. Außerdem

wird unnötigerweise (vgl. Anhang B) doppelt mit dem Namen Peter Müller verglichen. Inhaltlich

ist die SQL-Abfrage fast korrekt. Der einzige Fehler ist, dass Peter Müller als sein eigener

Freund betrachtet wird. Deswegen wird fälschlicherweise zusätzlich sein Abteilungsleiter

ausgegeben, und nicht nur die seiner Freunde. Denselben Fehler machte z.B. auch Microsoft

Copilot bei der Aufgabenstellung 32 und ChatGPT bei Nr. 25 und 32.

SELECT m.PersonalNr, m.Vorname, m.Nachname

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

WHERE a.AbteilungsNr IN (

SELECT ma.ArbeitetInAbteilungsNr

FROM Mitarbeiter ma JOIN IstBefreundetMit f

ON ma.PersonalNr = f.PersonalNr1 OR ma.PersonalNr = f.PersonalNr2

WHERE (f.PersonalNr1 =

(SELECT PersonalNr

 FROM Mitarbeiter

 WHERE Vorname = 'Peter' AND Nachname = 'Müller')

OR f.PersonalNr2 =

(SELECT PersonalNr

 FROM Mitarbeiter

 WHERE Vorname = 'Peter' AND Nachname = 'Müller')

)

)

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind

Die zuerst generierte Lösung ist fehlerhaft, weil auch der Vorgesetzte von Peter Müller ausge-

geben wird. Grund hierfür ist, dass die Mitarbeiter m und v identisch sein können, z.B. wenn bei

beiden Join-Bedingungen PersonalNr1 verwendet wird. Es fehlt also wieder eine mit AND

verknüpfte Bedingung, die dies explizit ausschließt (vgl. Anhang B).

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN IstBefreundetMit b

ON m.PersonalNr = b.PersonalNr1 OR m.PersonalNr = b.PersonalNr2

JOIN Mitarbeiter v ON (b.PersonalNr1 = v.PersonalNr OR b.PersonalNr2 = v.PersonalNr)

JOIN Mitarbeiter p ON v.VorgesetzterPersonalNr = p.PersonalNr

31

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

Die erneute Ausführung dieses Tests führte zu eine SQL-Abfrage, bei der dieser Fehler nicht

auftritt. Stattdessen wird jetzt aber wieder angenommen (vgl. Nr. 24), dass alle Freundschafts-

beziehungen doppelt in der Tabelle IstBefreundetMit eingetragen sind. Deswegen ist diese

Lösung lediglich als noch korrekt zu betrachten.

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN IstBefreundetMit ibm ON m.PersonalNr = ibm.PersonalNr2

JOIN Mitarbeiter vorgesetzter ON ibm.PersonalNr1 = vorgesetzter.PersonalNr

JOIN Mitarbeiter peter ON vorgesetzter.PersonalNr = peter.VorgesetzterPersonalNr

WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Müller'

Eine dritte Ausführung dieses Tests führte zu einer Lösung, mit derselben Unzulänglichkeit, wie

beim zweiten Versuch.

33. Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Müller befreundet sind

Beim ersten Test wurde eine falsche Lösung generiert. Bei dieser ermittelt die 1. Sub-Query

die PersonalNr vom Abteilungsleiter von Peter Müller und gibt diese zurück. Das zugehörige IN

sorgt dafür, dass die AbteilungsleiterPersonalNr der Abteilung a diesen Wert hat. Da es also

derselbe Abteilungsleiter sein muss, ist a die Abteilung, der Peter Müller zugeordnet ist. Durch

den 1. Join werden die Abteilungskollegen von Peter Müller ausgegeben. Die eigentlich

notwendige Beziehung IstBefreundetMit wird nicht sinnvoll verwendet. Dies ist daran zu

erkennen, dass nur ein einziger Fremdschlüssel dieser N:M-Beziehung verwendet wird (in der

Join-Bedingung mit dem OR, d.h. entweder b.PersonalNr1 oder b.PersonalNr2). Der jeweils

andere Fremdschlüssel kommt in gar keiner Bedingung vor, so dass die daraus resultierenden

Freunde überhaupt nicht ermittelt werden.

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN IstBefreundetMit b ON a.AbteilungsleiterPersonalNr = b.PersonalNr1

OR a.AbteilungsleiterPersonalNr = b.PersonalNr2

WHERE a.AbteilungsleiterPersonalNr IN (

 SELECT a2.AbteilungsleiterPersonalNr

 FROM Mitarbeiter m2 JOIN Abteilung a2

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller')

 AND m.PersonalNr <> (

SELECT a2.AbteilungsleiterPersonalNr

FROM Mitarbeiter m2 JOIN Abteilung a2

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller')

Eine wiederholte Ausführung dieses Tests führte zu einer korrekten Lösung. Hier wird sogar

explizit berücksichtigt, dass Freundschaftsbeziehungen evtl. nicht doppelt in der Tabelle

IstBefreundetMit eingetragen sind. Dies erfolgt durch das OR und die ersten beiden Sub-

Queries. Außerdem wird durch das != () und die 3. Sub-Query der Abteilungsleiter von Peter

Müller aus dem Ergebnis ausgeschlossen.

32

Allerdings ist auch diese Lösung (durch die vielen Sub-Queries und den mehrfachen Vergleich

mit dem Namen Peter Müller) verwirrender und komplexer als die in Anhang B dargestellte

SQL-Abfrage.

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN IstBefreundetMit b ON a.AbteilungsleiterPersonalNr = b.PersonalNr1

OR a.AbteilungsleiterPersonalNr = b.PersonalNr2

WHERE (

b.PersonalNr1 = (

SELECT a2.AbteilungsleiterPersonalNr

FROM Mitarbeiter m2 JOIN Abteilung a2

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller')

OR b.PersonalNr2 = (

SELECT a2.AbteilungsleiterPersonalNr

FROM Mitarbeiter m2 JOIN Abteilung a2

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller')

)

AND m.PersonalNr != (

SELECT a2.AbteilungsleiterPersonalNr

FROM Mitarbeiter m2 JOIN Abteilung a2

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller')

Sonstige Auffälligkeiten

Im Folgenden sind einige Auffälligkeiten der generierten Ergebnisse dargestellt, die

unabhängig von der reinen Korrektheit der SQL-Abfragen sind.

1. Erklärungen durch das LLM

Alle getesteten LLMs haben, außer der SQL-Abfrage selbst, jeweils einen Text generiert, der

deren Funktionsweise erklärt. Diese Erklärungen können für den Benutzer hilfreich sein, um die

Lösung zu besser verstehen. Im Idealfall hilft dies Studierenden sogar, zukünftig für ähnliche

Problemstellungen selbst eine entsprechende SQL-Abfrage zu erstellen. Es ist also dadurch

ein gewisser „Lerneffekt“ möglich. Nachfolgend ist exemplarisch die von ChatGPT erstellte

Erklärung für die Aufgabenstellung 27 dargestellt:

Um die Abteilungsleiter von Freunden des Mitarbeiters Peter Müller zu ermitteln, müssen wir

folgende Schritte in der SQL-Abfrage durchführen:

1. Mitarbeiter suchen: Zuerst müssen wir den PersonalNr des Mitarbeiters „Peter Müller“

herausfinden.

2. Freunde von Peter Müller finden: Wir ermitteln alle Freunde, die mit „Peter Müller“ über

die Tabelle IstBefreundetMit verknüpft sind.

33

3. Abteilungsleiter der Freunde finden: Für jeden Freund suchen wir den Abteilungsleiter

der jeweiligen Abteilung, in der der Freund arbeitet.

4. Abteilungsleiter-Informationen anzeigen: Zuletzt holen wir die Daten der Abteilungsleiter,

also deren PersonalNr, Vorname, und Nachname.

Die SQL-Abfrage sieht wie folgt aus:

SELECT DISTINCT A.AbteilungsleiterPersonalNr AS PersonalNr, M.Vorname, M.Nachname

FROM AbteilungsDB.Mitarbeiter P JOIN AbteilungsDB.IstBefreundetMit IB

ON P.PersonalNr = IB.PersonalNr1 OR P.PersonalNr = IB.PersonalNr2

JOIN AbteilungsDB.Mitarbeiter F

ON (IB.PersonalNr1 = F.PersonalNr AND P.PersonalNr != IB.PersonalNr1)

OR (IB.PersonalNr2 = F.PersonalNr AND P.PersonalNr != IB.PersonalNr2)

JOIN AbteilungsDB.Abteilung A ON F.ArbeitetInAbteilungsNr = A.AbteilungsNr

JOIN AbteilungsDB.Mitarbeiter M ON A.AbteilungsleiterPersonalNr = M.PersonalNr

WHERE P.Vorname = 'Peter' AND P.Nachname = 'Müller';

Erklärung:

• Zuerst suchen wir nach dem Mitarbeiter „Peter Müller“ in der Tabelle Mitarbeiter (abgefragt

über P).

• Wir verbinden die Tabelle IstBefreundetMit, um alle Freunde von Peter Müller zu finden

(über die Verknüpfung der PersonalNr von „Peter Müller“ mit den PersonalNr1 oder

PersonalNr2).

• Anschließend verknüpfen wir die Tabelle Abteilung, um für jeden Freund die zugehörige

Abteilung zu finden.

• Schließlich holen wir die Daten des Abteilungsleiters (über die AbteilungsleiterPersonalNr

aus der Tabelle Abteilung), indem wir auf die Tabelle Mitarbeiter zugreifen.

Die Ergebnismenge enthält dann die PersonalNr, den Vorname und den Nachname der

Abteilungsleiter, die für die Freunde von Peter Müller zuständig sind.

Allerdings waren auch die falschen Lösungen mit einer teilweise „plausibel klingenden“

Erklärung versehen. So erstellte z.B. Microsoft Copilot für die Aufgabenstellung 19 den

nachfolgend dargestellten Erklärungstext. Die SQL-Abfrage ist – wie bereits im vorherigen

Abschnitt erläutert – jedoch falsch, und der Erklärungstext führt möglicherweise dazu, dass ein

Benutzer sie für plausibel und deshalb die SQL-Abfrage für korrekt hält. Dies gilt umso mehr,

als dass der Erklärungstext keinen deutlich erkennbaren „roten Faden“ besitzt, so dass

aufgrund von Begründungen kein „Denkfehler“ (z.B. verletzte Kausalität) erkennbar wäre.

Um die Kunden zu finden, die keinen Artikel mit einem Gewicht von 1715 kg bestellt haben,

kannst du eine SQL-Abfrage verwenden, die eine Kombination aus LEFT JOIN und WHERE-

Klauseln nutzt, um die gewünschten Ergebnisse zu filtern. Hier ist ein Beispiel für eine solche

Abfrage:

SELECT k.KundenNr, k.Name, k.Umsatz

FROM Kunde k LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr AND a.Gewicht = 1715

WHERE a.ArtikelNr IS NULL;

Diese Abfrage funktioniert wie folgt:

34

1. LEFT JOIN verbindet die Tabellen Kunde, Bestellung, BestellPos und Artikel.

2. Die Bedingung AND a.Gewicht = 1715 stellt sicher, dass nur Artikel mit einem Gewicht

von 1715 kg in die Verbindung einbezogen werden.

3. Die WHERE-Klausel a.ArtikelNr IS NULL filtert die Ergebnisse, um nur die Kunden

anzuzeigen, die keinen Artikel mit einem Gewicht von 1715 kg bestellt haben.

Falls du noch weitere Fragen hast oder Hilfe benötigst, lass es mich wissen! সহ঺঻

2. Verwirrende Lösungen

Die LLMs generierten teilweise sehr verwirrende Lösungen. Wie bereits im vorherigen

Abschnitt erläutert, wurden z.B. sehr viele Sub-Queries verwendet, teilweise sogar bei

Aufgabenstellungen, die problemlos ganz ohne Sub-Query lösbar sind. Dies war unter

anderem der Fall bei ChatGPT bei der Aufgabenstellung 29 und bei DeepSeek bei den

Aufgabenstellungen 33 und 27. Bei der letzteren wurden sogar ineinander verschachtelte Sub-

Queries verwendet. In diesen war zudem auch noch der Vergleich mit dem vorgegebenen

Namen Peter Müller doppelt realisiert (d.h. in zwei dieser Sub-Queries).

Selbstverständlich können auch solch komplexe Lösungen von einem Datenbanksystem

ausgeführt werden. Problematisch ist im hier betrachteten Kontext jedoch, wenn Studierende

versuchen, die generierte SQL-Abfrage als Muster für diese Art von Aufgabenstellung zu

erlernen. Aufgrund der unnötig komplexen SQL-Abfrage wird es für sie schwierig sein, im Falle

einer ähnlichen Aufgabenstellung, eine korrekte Lösung auf dieser Basis zu erstellen.

3. Sonstiges

Häufig wurde in den generierten SQL-Abfragen eine „Langform“ für Namen von Tabellen

verwendet, z.B. KundenDB.Adresse. Dieses Format (also Datenbankname.Tabellenname) ist

in MySQL erlaubt und die Vorgabe der von MySQL-Workbench generierten CREATE-TABLE-

Befehle im Prompt kann eine Ursache hierfür sein. Dieses Tabellennamen-Format funktioniert

jedoch bei anderen Datenbanksystemen nicht (z.B. Microsoft Access). Außerdem ist es

auffällig, weil es so in (normalen) Datenbank-Vorlesung nicht gelehrt wird und zudem in

Lehrbüchern zu SQL so nicht verwendet wird. Dies kann also ein Indiz dafür darstellen, dass

eine SQL-Abfrage (z.B. in einer Prüfung) nicht vom Studierenden erstellt, sondern mittels einer

KI generiert wurde.

Ähnlich ist es mit der Tatsache, dass häufig Lösungen mit dem Schlüsselwort JOIN anstatt

INNER JOIN generiert wurden. Auch das wird in Vorlesungen oft nicht so gelehrt und kann bei

manchen Datenbanksystemen (z.B. Microsoft Access) so nicht verwendet werden.

Schließlich haben alle LLMs für die Aufgabenstellung 11 bei der Originalformulierung (der

Kunde mit dem größten Umsatz) eine Lösung mit „limit 1“ generiert. Dies ist keine Operation

der Relationenalgebra, wird so üblicherweise nicht gelehrt und wird ebenfalls von manchen

Datenbanksystemen nicht unterstützt.

Fazit
Bei den durchgeführten Tests hing die Qualität der generierten SQL-Abfragen von dem jeweils

verwendeten LLM ab (wie in Abb. 3 an den Hintergrundfarben leicht erkennbar ist). Jedoch ist

die Anzahl der getesteten Aufgabenstellung und auch die Anzahl der jeweiligen Wieder-

holungen der Tests zu gering, um die Qualität der LLMs verallgemeinerbar vergleichen zu

können. Dies war auch nicht das Ziel der Experimente. Es konnte jedoch gezeigt werden, dass

35

alle untersuchten LLMs nicht absolut fehlerfrei fähig sind, eine SQL-Abfrage für eine gegebene

Aufgabenstellung zu generieren. Es entstanden sogar falsche Lösungen bei der sehr einfach

strukturierten Kunden-Datenbank und auch bei recht einfachen Aufgabenstellungen (aus einer

Einführungsvorlesung zum Thema Datenbanken).

Bei dem komplexeren Schema der Firmen-Datenbank wurden deutlich mehr falsche Abfragen

generiert. Fehler waren unter anderem eine falsche Verwendung der rekursiven Beziehungen

(z.B. IstBefreundetMit) oder die Benutzung der falschen Beziehung, wenn mehrere zwischen

denselben Tabellen existieren. Dass in diesen Fällen mehr Fehler auftreten ist auch

nachvollziehbar, weil mehrere Fremdschlüssel-Attribute existieren, so dass ein falsches

verwendet werden kann. Zudem waren die resultierenden Join-Bedingungen bei manchen

Aufgabenstellungen komplexer. Entsprechende Szenarien entsprechen (wie bei der

Literaturanalyse dargestellt) aber eher dem, was in einem realen betrieblichen Umfeld zu

erwarten ist (dann evtl. aber mit noch deutlich mehr Tabellen und Spalten).

Zusammenfassend lässt sich feststellen, dass die Generierung von SQL-Abfragen keineswegs

fehlerfrei erfolgt ist. Deshalb sind deren Kontrolle und ggf. Überarbeitung durch den Benutzer

erforderlich. Andererseits wurden (insb. durch DeepSeek) so gute Abfragen generiert, dass

deren Verwendung in einer Prüfung zu einem besseren Ergebnis führen kann, als deren

selbstständige Erstellung (zumindest bei Studierenden mit schlechten SQL-Kenntnissen).

Schlussfolgerungen
Im Folgenden werden einige Konsequenzen abgeleitet, sowohl für die Generierung von SQL-

Abfragen im beruflichen Umfeld als auch für die Lehre.

SQL-Generierung in der betrieblichen Praxis
Folgende Vorgehensweisen für die Erstellung von SQL-Abfragen sind theoretisch denkbar:

1. Generierung von SQL-Anweisungen ohne deren Kontrolle:

Die durchgeführten Tests basierten allesamt auf Datenbank-Schemata und Aufgaben-

stellungen, die, verglichen mit einem beruflichen Umfeld, recht einfach waren. Dennoch

wurden völlig falsche oder unzulängliche SQL-Abfragen generiert. Auch die Literaturanalyse

bestätigt diesen Sachverhalt. Daraus folgt, dass die Verwendung von automatisch

generierten Ergebnissen ohne weitere Kontrolle nicht sinnvoll ist.

2. Generierung von SQL-Anweisungen mit anschließender Kontrolle:

Eine akzeptable Möglichkeit ist, sich für eine gegebene Problemstellung die zugehörige

SQL-Abfrage generieren zu lassen und dann zu überprüfen. Hierfür sind ähnliche SQL-

Kenntnisse erforderlich, wie für die selbstständige Erstellung der Abfrage. Evtl. lässt sich so

jedoch Arbeitszeit einsparen. Allerdings birgt diese Vorgehensweise die Gefahr, dass Fehler

im generierten Programm-Code übersehen werden, weil der Benutzer nicht zuerst selbst

über die Problemstellung nachgedacht hat. Dann kann eine falsche Lösung durchaus

plausibel wirken. Die (im vorherigen Abschnitt bereits diskutierten) Erklärungstexte des

LLMs können zusätzlich dazu führen, dass man die erläuterte Funktionsweise einer falschen

Lösung plausibel findet. Durch die teilweise sehr verwirrenden SQL-Abfragen, welche die

LLMs generieren, wird es für den Benutzer zusätzlich erschwert, Fehler als solche zu

erkennen.

36

3. Manuelle Erstellung und anschließende SQL-Generierung zur Überprüfung:

Vermutlich ist es die sicherste Vorgehensweise, eine Lösung zuerst manuell zu erstellen.

Danach kann eine generierte SQL-Abfrage genutzt werden, um so nach Fehlern in der

eigenen Lösung zu suchen. Beispielsweise kann die in einer generierten SQL-Abfrage

enthaltene Bedingung „AND p.PersonalNr <> AbtLeiter.PersonalNr“ (vgl. Aufgaben-

stellung 24 im Anhang B) dazu führen, dass der Benutzer erkennt, dass der Abteilungsleiter

(AbtLeiter) ansonsten mit der Person (p) identisch sein kann. Ähnlich kann hier wegen der

generierten Oder-Verknüpfung „OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2“

erkannt werden, dass Freundschaften nicht doppelt in der Tabelle IstBefreundetMit

gespeichert sind (oder eben doch, weshalb diese Bedingung weggelassen werden kann, um

so eine bessere Ausführungsgeschwindigkeit zu erzielen). Idealerweise wird die selbst

erstellte SQL-Abfrage mit mehreren generierten Lösungen verglichen, wobei hierfür

unterschiedliche LLMs verwendet werden sollten.

Die akzeptablen Vorgehensweisen 2 und 3 haben gemeinsam, dass hierfür gute SQL-

Kenntnisse erforderlich sind.

Auswirkungen auf die Lehre
Im Folgenden werden einige Aspekte dargestellt, welche die zukünftige Gestaltung von

Lehrveranstaltungen und Prüfungen betreffen.

1. SQL weiterhin Thema in der Lehre:

Eine Erkenntnis dieser Arbeit ist, dass Mitarbeiter weiterhin SQL-Kompetenzen benötigen.

Der Grund dafür ist, dass von einer KI generierte Lösungen zwar häufig korrekt sind, man

sich aber nicht darauf verlassen kann. Obwohl insb. DeepSeek häufig korrekte SQL-

Abfragen erstellt hat, war dies nicht bei jeder Wiederholung desselben Experiments der Fall,

d.h. teilweise erst bei der 2. Durchführung des Tests. Da die Tests unabhängig voneinander

durchgeführt wurden, kann natürlich ebenso die erste Lösung korrekt sein und die nach-

folgend durchgeführten Tests zu einem falschen Ergebnis führen. Zudem entstand bei einer

geringfügig veränderten Aufgabenstellung beim selben LLM manchmal eine fehlerhafte (z.B.

DeepSeek Aufgabe 24) und manchmal eine korrekte Lösung (Aufgabe 25 und 26). Der

Benutzer muss die generierten SQL-Abfragen also verstehen und überprüfen können.

Hierfür sind gute SQL-Kenntnisse erforderlich, weil die Fehler teilweise schwer zu finden

sind (wie u.a. bei Microsoft Copilot für Aufgabe 30 diskutiert).

Dasselbe gilt für die Vorgehensweise, das Prompt um Erklärungen und Beispiele anzu-

reichern. Die generierten Ergebnisse müssen dennoch überprüft werden, weil diese

Vorgehensweise zwar manchmal zu einer fehlerfreien Lösung führt (vgl. Copilot Auf-

gabe 16b. bis d.), ein zusätzliches Beispiel aber auch in einer falschen Lösung resultieren

kann (vgl. Copilot Aufgabe 18). Auch sehr ausführliche Erklärungen und Beispiele führen

also nicht zuverlässig zu einer korrekten SQL-Abfrage. Deshalb ist es weiterhin erforderlich,

dass das Erstellen von SQL-Abfragen im Rahmen von Datenbank-Vorlesungen gelehrt wird.

Evtl. sollte hier jedoch der Aspekt des Verstehens und Überprüfens von SQL-Abfragen

gestärkt werden.

2. Unterstützung des Lernens durch LLMs:

Alle getesteten LLMs haben zusätzlich zur geforderten SQL-Abfrage auch Erklärungstexte

generiert. Diese können helfen, den generierten SQL-Code zu verstehen und damit das

37

Erlernen von SQL unterstützen. Allerdings kann ein Erklärungstext bei einer falsch

generierten SQL-Abfrage auch nachteilig sein, da dieser dann meisten ebenfalls inhaltlich

falsch sein wird. Dies ist für Studierende evtl. schwer erkennbar, so dass sie annehmen, die

Lösung und die Begründung seien korrekt. Es kann sich dann nachteilig auf den Lernerfolg

auswirken, wenn falsche Lösungen als Muster für diese Art von Problemstellung verinner-

licht werden.

Ähnlich negativ für den Lerneffekt ist, dass die LLMs teilweise unnötig komplexe SQL-

Abfragen generieren. Werden solche Lösungen zum Lernen verwendet, dann versuchen

Studierende sich diese als Muster für eine bestimmte Art von Aufgabenstellung einzu-

prägen. Bei sehr komplexen SQL-Abfragen ist das jedoch schwierig und später wird es ein

Problem darstellen, eine Lösung für eine ähnliche Aufgabenstellung korrekt zu reprodu-

zieren. Es ist einfacher, kürzere und gut strukturierte Lösungen (vgl. Anhang B) zu

verstehen, wie sie z.B. in einem Lehrbuch vermittelt werden.

3. Auswirkungen auf Prüfungen:

Die generierten Ergebnisse (insb. bei DeepSeek) sind recht gut. Deshalb kann es für

Studierende mit beschränkten SQL-Kenntnissen vorteilhaft sein (d.h. es führt zu einer

besseren Note), sich SQL-Abfragen von einem LLM generieren zu lassen, anstatt selbst

eine Lösung zu erstellen. Dies gilt sogar, wenn sie die von der KI erstellten SQL-Abfragen

überhaupt nicht verstehen und deshalb auch nicht überprüfen oder verbessern können.

Daraus folgt, dass eine außerhalb eines überwachten Prüfungsraums abgelegte Leistung

(z.B. eine Projektarbeit, Ausarbeitung, o.ä.) keinen größeren Einfluss auf die resultierende

Zeugnisnote haben sollte.

Zusammenfassung, Limitationen und Ausblick
In dieser Arbeit wurde wissenschaftliche Literatur zum Thema SQL-Generierung mittels eines

LLMs analysiert. Außerdem wurden mit drei aktuell populären LLMs hierzu Tests durchgeführt.

Die Erkenntnis aus beidem ist, dass die Qualität von generierten SQL-Abfragen heutzutage

zwar gut ist, aber diese keinesfalls zuverlässig fehlerfrei sind. Ziel war es, Auswirkungen auf

die zukünftig für Hochschulabsolventen erforderlichen Fähigkeiten und die Gestaltung von

Lehrveranstaltungen zum Thema Datenbanken zu ermitteln. Da die entsprechenden Schluss-

folgerungen im vorherigen Abschnitt bereits ausführlich erläutert wurden, werden nachfolgend

nur die wichtigsten Ergebnisse kurz zusammengefasst:

 SQL muss weiterhin ein Bestandteil der Datenbank-Lehre sein, weil generierte SQL-

Abfragen zumindest überprüft und ggf. korrigiert werden müssen.

 Von LLMs generierte SQL-Abfragen können Studierenden beim Lernen helfen. Da LLMs

auch falsche oder verwirrende SQL-Abfragen generieren, birgt diese Vorgehensweise aber

auch Risiken.

 Weil generierte SQL-Abfragen teilweise eine gute Qualität haben, sollten entsprechende

Prüfungen nur einem überwachten Prüfungsraum durchgeführt werden bzw. außerhalb

dieses Raums erstellte Prüfungsleistungen allenfalls einen kleinen Einfluss auf die

Gesamtnote haben.

Die mit den LLMs durchgeführten Test lassen keinen verallgemeinerbaren oder quantitativen

Vergleich von deren Fähigkeit zur SQL-Generierung zu. Hierfür wurden zu wenige Wieder-

holungen für eine Aufgabenstellung durchgeführt und zudem zu wenige unterschiedliche

38

Aufgabenstellungen getestet. Außerdem ist es möglich, dass bei einem anderen Szenario oder

aus einer anderen Formulierung der Aufgabenstellungen ein abweichendes Ergebnis resultiert.

Ziel war lediglich, einen ersten Eindruck bzgl. der Leistungsfähigkeit verschiedener LLMs zu

gewinnen. Die Schlussfolgerungen für die Gestaltung zukünftiger Lehrveranstaltungen sind

nicht formal belegbar und nicht mittels einer Studie überprüft. Evtl. sind sie auch teilweise

durch die eigene Lehrerfahrung des Autors geprägt und damit nicht objektiv.

Der von einem LLM generierte Text ist stets abhängig von den verwendeten Lerndaten. Da

dem Autor unbekannt ist, ob die verwendeten Szenarien in diesen besonders häufig oder

besonders selten vorkommen, könnten zukünftig noch Tests mit anderen Szenarien

durchgeführt werden. Außerdem wäre es möglich, zukünftig ähnliche Experiment für andere

Datenbank-Themen durchzuführen, wie z.B. die Generierung eines Entity-Relationship-

Diagramm aus einer vorgegebene Szenariobeschreibung, die Ableitung der daraus

resultierenden Datenbanktabellen oder die Generierung eines Programms, das SQL-

Anweisungen enthält (z.B. ein Java-Programm mit JDBC-Anweisungen).

Literatur
Bhaskar, A., Tomar, T., Sathe, A., Sarawagi, S., 2023. Benchmarking and Improving Text-to-

SQL Generation under Ambiguity. arXiv:2310.13659.
https://doi.org/10.48550/arXiv.2310.13659

Biswal, A., Patel, L., Jha, S., Kamsetty, A., Liu, S., Gonzalez, J.E., Guestrin, C., Zaharia, M.,
2024. Text2SQL is Not Enough: Unifying AI and Databases with TAG.
arXiv:2408.14717. https://doi.org/10.48550/arXiv.2408.14717

Campos, J., García, G., A. De Sousa, J., Corseuil, E., Izquierdo, Y., Lemos, M., Casanova, M.,
2025. Text-to-SQL Experiments with Engineering Data Extracted from CAD Files, in:
Proc. 27th Int. Conf. on Enterprise Information Systems, Y. Porto, pp. 343–350.
https://doi.org/10.5220/0013436800003929

Carr, N., Shawon, F.R., Jamil, H.M., 2023. An Experiment on Leveraging ChatGPT for Online
Teaching and Assessment of Database Students, in: Proc. IEEE Conf. on Teaching,
Assessment and Learning for Engineering. pp. 1–8.
https://doi.org/10.1109/TALE56641.2023.10398239

Dixit, R., Gajjam, N., 2024. AI2SQL.io: Empowering SQL Learning and SocialChange Through
IT-Enabled Smart Tutoring in Computer Science and Engineering, in: Proc. Int. Conf. on
Artificial Intelligence and Quantum Computation-Based Sensor Application. pp. 1–5.
https://doi.org/10.1109/ICAIQSA64000.2024.10882332

Dong, X., Zhang, C., Ge, Y., Mao, Y., Gao, Y., Chen, lu, Lin, J., Lou, D., 2023. C3: Zero-shot
Text-to-SQL with ChatGPT. arXiv:2307.07306.
https://doi.org/10.48550/arXiv.2307.07306

Farinetti, L., Cagliero, L., 2025. A Critical Approach to ChatGPT: An Experience in SQL
Learning, in: Proc. 56th ACM Technical Symposium on Computer Science Education.
ACM, Pittsburgh, pp. 318–324. https://doi.org/10.1145/3641554.3701932

Floratou, A., Psallidas, F., Zhao, F., Deep, S., Hagleither, G., Cahoon, J., Alotaibi, R., Henkel,
J., Singla, A., van Grootel, A., Deng, K., Lin, K., Campos, M., Emani, V., Pandit, V.,
Wang, W., Curino, C., 2024. NL2SQL is a Solved Problem... Not!, in: Proc. Conf. on
Innovative Data Systems Research.

Gaitantzi, A., Kazanidis, I., 2025. The Role of Artificial Intelligence in Computer Science
Education: A Systematic Review with a Focus on Database Instruction. Applied
Sciences 15, 3960. https://doi.org/10.3390/app15073960

Ganesan, S., Gong, T., Lee, J., 2024. SQLearn: Automated SQL Statement Assessment using
Structure-based Analysis, in: Proc. 55th ACM Technical Symposium on Computer
Science Education. ACM, Portland, pp. 1644–1645.
https://doi.org/10.1145/3626253.3635607

39

Ganti, M., Orr, L., Wu, S., 2024. Evaluating Text-to-SQL Model Failures on Real-World Data,
in: Proc, IEEE 40th Int. Conf. on Data Engineering.
https://doi.org/10.1109/ICDE60146.2024.00456

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., Zhou, J., 2023. Text-to-SQL Empowered
by Large Language Models: A Benchmark Evaluation. arXiv:2308.15363.
https://doi.org/10.48550/arXiv.2308.15363

Hong, S.H., Storey, V.C., 2023. Teaching SQL Using ChatGPT, in: Proc. 29th Americas Conf.
on Information Systems. Panama.

Kim, H., So, B.-H., Han, W.-S., Lee, H., 2020. Natural Language to SQL: Where are we Today?
Proc. VLDB Endowment 13, 1737–1750. https://doi.org/10.14778/3401960.3401970

Lan, W., Wang, Z., Chauhan, A., Zhu, H., Li, A., Guo, J., Zhang, S., Hang, C.-W., Lilien, J., Hu,
Y., Pan, L., Dong, M., Wang, J., Jiang, J., Ash, S., Castelli, V., Ng, P., Xiang, B., 2023.
UNITE: A Unified Benchmark for Text-to-SQL Evaluation. arXiv:2305.16265.
https://doi.org/10.48550/arXiv.2305.16265

Lee, G., Chay, W., Cho, S., Choi, E., 2024. TrustSQL: Benchmarking Text-to-SQL Reliability
with Penalty-Based Scoring. arXiv:2403.15879.
https://doi.org/10.48550/arXiv.2403.15879

Li, J., Hui, B., Qu, G., Yang, J., Li, Binhua, Li, Bowen, Wang, B., Qin, B., Geng, R., Huo, N.,
Zhou, X., Chenhao, M., Li, G., Chang, K., Huang, F., Cheng, R., Li, Y., 2023. Can LLM
Already Serve as a Database Interface? A Big Bench for Large-Scale Database
Grounded Text-to-SQLs. Advances in Neural Information Processing Systems 36,
42330–42357.

Liu, A., Hu, X., Wen, L., Yu, P.S., 2023. A Comprehensive Evaluation of ChatGPT’s Zero-shot
Text-to-SQL Capability. arXiv:2303.13547. https://doi.org/10.48550/arXiv.2303.13547

Liu, X., Shen, S., Li, B., Ma, P., Jiang, R., Zhang, Y., Fan, J., Li, G., Tang, N., Luo, Y., 2025. A
Survey of NL2SQL with Large Language Models: Where are we, and where are we
going? https://doi.org/10.48550/arXiv.2408.05109

Ma, L., Pu, K., Zhu, Y., 2024. Evaluating LLMs for Text-to-SQL Generation With Complex SQL
Workload. arXiv:2407.19517. https://doi.org/10.48550/arXiv.2407.19517

Matek, T., Zrnec, A., Lavbič, D., 2017. Learning SQL with Artificial Intelligent Aided Approach.
Int. Journal of Information and Education Technology 7, 803–808.
https://doi.org/10.18178/ijiet.2017.7.11.976

Mohammadjafari, A., Maida, A.S., Gottumukkala, R., 2025. From Natural Language to SQL:
Review of LLM-based Text-to-SQL Systems. arXiv:2410.01066.
https://doi.org/10.48550/arXiv.2410.01066

Nascimento, E., Avila, C., Izquierdo, Y., García, G., Andrade, L., Facina, M., Lemos, M.,
Casanova, M., 2025. On the Text-to-SQL Task Supported by Database Keyword
Search, in: Proc. 27th Int. Conf. on Enterprise Information Systems. Porto, pp. 173–180.
https://doi.org/10.5220/0013126300003929

Poess, M., Floyd, C., 2000. New TPC Benchmarks for Decision Support and Web Commerce.
ACM SIGMOD Record 29, 64–71. https://doi.org/10.1145/369275.369291

Pornphol, P., Chittayasothorn, S., 2023. Verification of Relational Database Languages Codes
Generated by ChatGPT, in: Proc. 4th Asia Service Sciences and Software Engineering
Conference. ACM, Aizu-Wakamatsu City, pp. 17–22.
https://doi.org/10.1145/3634814.3634817

Prakash, K., Rao, S., Hamza, R., Lukich, J., Chaudhari, V., Nandi, A., 2024. Integrating LLMs
into Database Systems Education, in: Proc. 3rd Int. Workshop on Data Systems
Education: Bridging Education Practice with Education Research. ACM, Santiago, pp.
33–39. https://doi.org/10.1145/3663649.3664371

Qin, B., Hui, B., Wang, L., Yang, M., Li, J., Li, B., Geng, R., Cao, R., Sun, J., Si, L., Huang, F.,
Li, Y., 2022. A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions. arXiv:2208.13629. https://doi.org/10.48550/arXiv.2208.13629

Shi, L., Tang, Z., Zhang, N., Zhang, X., Yang, Z., 2024. A Survey on Employing Large
Language Models for Text-to-SQL Tasks. arXiv:2407.15186.
https://doi.org/10.48550/arXiv.2407.15186

40

Steinberger, C., Wedam, A., 2025. Facilitate Flipped SQL-Classrooms with Text-Generating AI,
in: Auer, M.E., Rüütmann, T. (Eds.), Futureproofing Engineering Education for Global
Responsibility. Springer Nature Switzerland, pp. 451–461. https://doi.org/10.1007/978-
3-031-85652-5_45

Sun, S., Zhang, Y., Yan, J., Gao, Y., Ong, D., Chen, B., Su, J., 2023. Battle of the Large
Language Models: Dolly vs LLaMA vs Vicuna vs Guanaco vs Bard vs ChatGPT - A
Text-to-SQL Parsing Comparison. arXiv:2310.10190.
https://doi.org/10.48550/arXiv.2310.10190

Taipalus, T., Seppänen, V., 2020. SQL Education: A Systematic Mapping Study and Future
Research Agenda. ACM Transactions on Computing Education 20, 1–33.
https://doi.org/10.1145/3398377

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q., Roman, S.,
Zhang, Z., Radev, D., 2019. Spider: A Large-Scale Human-Labeled Dataset for
Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task.
arXiv:1809.08887. https://doi.org/10.48550/arXiv.1809.08887

Zhang, B., Ye, Y., Du, G., Hu, X., Li, Zhishuai, Yang, S., Liu, C.H., Zhao, R., Li, Ziyue, Mao, H.,
2024. Benchmarking the Text-to-SQL Capability of Large Language Models: A
Comprehensive Evaluation. arXiv:2403.02951.
https://doi.org/10.48550/arXiv.2403.02951

Zhang, X., 2025. Teaching Tip Incorporating AI Tools Into Database Classes. Journal of
Information Systems Education 36, 37–52. https://doi.org/10.62273/GKZI2477

41

Anhang A: Übersicht über die Aufgabenstellungen

Auf Basis der Kunden-Datenbank (vgl. Abb. 1):

1.

Anzeige aller Zahlungsarten, bei denen ein „a“ in der Bezeichnung vorkommt.

Auszugebende Ergebnisspalten: ZahlArtNr, Bezeichnung

2.

Alle Bestellungen und die zugehörige Rechnungsnummer, sortiert nach BestellNr.

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum, RechnungsNr

3.

Alle Bestellungen und die zugehörige Rechnungsnummer, sortiert nach BestellNr, inkl. der

Bestellungen, für die (noch) keine Rechnung existiert.

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum, RechnungsNr

4.

Alle Bestellungen sortiert nach BestellNr, aber nur Bestellungen, für die (noch) keine Rechnung

existiert.

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum

5.

Anzahl der Bestellungen je Artikel.

Auszugebende Ergebnisspalten: ArtikelNr, Artikelname, Anzahl Bestellungen

6.

Preis (aus Tabelle Bestellposition) des teuersten Artikels, den AVIS bestellt hat.

Auszugebende Ergebnisspalten: Preis, das Ergebnis soll nur 1 Zeile enthalten

7.

Alle besonderen Kunden, d.h. alle Problemkunden und alle Premiumkunden – aber nicht die

„normalen“ Kunden.

Auszugebende Ergebnisspalten: KundenNr, Name, Anzahl Zahlungsausfälle (bei

Problemkunden) bzw. Kundenbewertung (bei Problemkunden)

8.

Errechnetes Gesamtgewicht und Gesamtherstellkosten aufgeschlüsselt nach Bestelldatum für

Bestellungen aus dem Jahr 2024.

Auszugebende Ergebnisspalten: Bestelldatum, Gesamtgewicht, Gesamtherstellkosten

9.

Alle Kundendaten, auch für Kunden bei denen einige Daten undefiniert sind.

Auszugebende Ergebnisspalten: KundenNr, Kundenname, Ort, PLZ, Key-Account-Mgr, Anzahl

Zahlungsausfälle

10.

Übersicht über die Bestellungen mit zugehörigen Detaildaten.

Auszugebende Ergebnisspalten: BestellNr, Kundenname, Anzahl Bestellpositionen, Preis des

teuersten Artikels

42

11.

Der Kunde (oder die Kunden) mit dem größten Umsatz.

Auszugebende Ergebnisspalten: Ergebnisspalten: KundenNr, Name, Umsatz

12.

Alle Kunden, die mind. 2 Bestellpositionen haben.

Auszugebende Ergebnisspalten: KundenNr, Name

13.

Alle Kunden, ohne Bestellpositionen.

Auszugebende Ergebnisspalten: KundenNr, Name

14.

Alle Kunden, die mind. für 100.000€ bestellt haben, basierend auf Preis & Anzahl aus

BestellPos.

Auszugebende Ergebnisspalten: KundenNr, Name

15.

Zahlungsarten, die ein Kunde mit mehr als 2 Mio € Umsatz benutzt hat, sowie zusätzlich

Artikel, die in einer Bestellposition als PosNr 1 oder 2 bestellt wurden.

Auszugebende Ergebnisspalten: Nr, Bezeichnung bzw. Name

16.

Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 (kg) bestellt wurde.

Auszugebende Ergebnisspalten: BestellNr, Datum, KundenNr

17.

Alle Zahlungsarten von Kunden, die den Artikel smart4two bestellt haben.

Auszugebende Ergebnisspalten: ZahlArtNr, (Zahlungsart-)Bezeichnung, (Kunden)Name

18.

Kunden, die die Zahlungsart Kreditkarte nie verwendet haben.

Auszugebende Ergebnisspalten: KundenNr, Name

19.

Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.

Auszugebende Ergebnisspalten: KundenNr, Name, Umsatz

20.

Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt

haben.

Auszugebende Ergebnisspalten: Strasse, HNr, PLZ, Ort

21.

Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)

bestellt haben.

Auszugebende Ergebnisspalten: ZahlungsartNr, Bezeichnung

43

Auf Basis der Firmen-Datenbank (vgl. Abb. 2):

22.

Der Abteilungsleiter der Abteilung "Marketing".

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

23.

Alle Mitarbeiter, die in der Abteilung "Marketing" angestellt sind.

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

24.

Alle Abteilungen, die Freunde des Mitarbeiters Peter Müller leiten.

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung

25.

Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten.

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung

26.

Die Standorte von Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten.

Auszugebende Ergebnisspalten: StandortNr, Ortsname

27.

Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Müller.

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

28.

Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Müller.

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

29.

Alle Vorgesetzten von Peter Müller, auch indirekt Vorgesetzte.

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

30.

Die Abteilungen, in denen Vorgesetzte von Peter Müller arbeiten, auch indirekt Vorgesetzte.

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung

31.

Die Abteilungen und die Standorte, an denen Vorgesetzte von Peter Müller arbeiten, auch

indirekt Vorgesetzte.

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung, StandortNr, Ortsname

32.

Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

33.

Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Müller befreundet sind

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

44

Anhang B: Mögliche Lösungen für die Aufgabenstellungen

Auf Basis der Kunden-Datenbank (vgl. Abb. 1):

1.

SELECT ZahlArtNr, Bezeichnung

FROM Zahlungsart

WHERE Bezeichnung LIKE '%a%'

2.

SELECT Bestellung.BestellNr, Bestellung.Datum, Rechnung.RechnungsNr

FROM Bestellung INNER JOIN Rechnung

 ON Bestellung.BestellNr = Rechnung.BestellNr

ORDER BY Bestellung.BestellNr

3.

SELECT Bestellung.BestellNr, Bestellung.Datum, Rechnung.RechnungsNr

FROM Bestellung LEFT OUTER JOIN Rechnung

 ON Bestellung.BestellNr = Rechnung.BestellNr

ORDER BY Bestellung.BestellNr

4.

SELECT Bestellung.BestellNr, Bestellung.Datum

FROM Bestellung LEFT OUTER JOIN Rechnung

 ON Bestellung.BestellNr = Rechnung.BestellNr

WHERE Rechnung.RechnungsNr IS NULL

ORDER BY Bestellung.BestellNr

5.

SELECT Artikel.ArtikelNr, Artikel.Name, COUNT(BestellNr) AS AnzahlBestellungen

FROM BestellPos INNER JOIN Artikel

 ON BestellPos.ArtikelNr = Artikel.ArtikelNr

GROUP BY Artikel.ArtikelNr, Artikel.Name

6.

SELECT MAX(Bestellpos.Preis) AS PreisTeuersterArtikel

FROM (Bestellpos INNER JOIN Bestellung ON Bestellpos.BestellNr = Bestellung.BestellNr)

 INNER JOIN Kunde ON Bestellung.KundenNr = Kunde.KundenNr

WHERE Name = 'AVIS'

7.

SELECT Kunde.KundenNr, Name

FROM Premiumkunde INNER JOIN Kunde ON Premiumkunde.KundenNr = Kunde.KundenNr

UNION

SELECT Kunde.KundenNr, Name

FROM Problemkunde INNER JOIN Kunde ON Problemkunde.KundenNr = Kunde.KundenNr

45

8.

SELECT Datum, SUM(Gewicht * Anzahl) AS Gesamtgewicht,

 SUM(Herstellkosten*Anzahl) AS Gesamtherstellkosten

FROM (Bestellung INNER JOIN Bestellpos ON Bestellung.BestellNr = Bestellpos.BestellNr)

 INNER JOIN Artikel ON Artikel.ArtikelNr = Bestellpos.ArtikelNr

WHERE Datum LIKE '%2024'

GROUP BY Datum

9.

SELECT Kunde.KundenNr, Kunde.Name, Ort, PLZ, KeyAccountMgr, AnzZahlungsausfälle

FROM ((Kunde LEFT OUTER JOIN Adresse ON Kunde.KundenNr = Adresse.KundenNr)

 LEFT OUTER JOIN Premiumkunde ON Kunde.KundenNr = Premiumkunde.KundenNr)

 LEFT OUTER JOIN Problemkunde ON Kunde.KundenNr = Problemkunde.KundenNr

10.

SELECT Bestellung.BestellNr, Kunde.Name, COUNT(Bestellpos.PosNr) AS AnzahlPositionen,

 MAX(Preis) AS PreisTeuersterArtikel

FROM (Bestellung INNER JOIN Kunde ON Bestellung.KundenNr = Kunde.KundenNr)

 INNER JOIN Bestellpos ON Bestellpos.BestellNr = Bestellung.BestellNr

GROUP BY Bestellung.BestellNr, Kunde.Name

11.

SELECT KundenNr, Name, Umsatz

FROM Kunde

WHERE Umsatz = (SELECT MAX(Umsatz) FROM Kunde)

12.

SELECT Kunde.KundenNr, Name

FROM (Kunde INNER JOIN Bestellung ON Kunde.KundenNr=Bestellung.KundenNr)

 INNER JOIN BestellPos ON Bestellung.BestellNr=BestellPos.BestellNr

GROUP BY Kunde.KundenNr, Name

HAVING COUNT(*) >= 2

13.

SELECT Kunde.KundenNr, Name

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)

 LEFT OUTER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr

WHERE PosNr IS NULL

oder:

SELECT Kunde.KundenNr, Name

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)

WHERE Bestellung.BestellNr NOT IN (SELECT BestellNr FROM BestellPos)

oder:

46

SELECT Kunde.KundenNr, Name

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)

 LEFT OUTER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr

GROUP BY Kunde.KundenNr, Name

HAVING COUNT(PosNr) = 0

14.

SELECT Kunde.KundenNr, Name, SUM (Preis * Anzahl) AS Gesamtpreis

FROM (Kunde INNER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)

 INNER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr

GROUP BY Kunde.KundenNr, Name

HAVING SUM (Preis * Anzahl) >= 100000

15.

SELECT Zahlungsart.ZahlArtNr, Bezeichnung

FROM (Zahlungsart INNER JOIN verwendet ON Zahlungsart.ZahlArtNr = verwendet.ZahlartNr)

 INNER JOIN Kunde ON verwendet.KundenNr = Kunde.KundenNr

WHERE Umsatz > 2000000

UNION

SELECT Artikel.ArtikelNr, Name

FROM Artikel INNER JOIN BestellPos ON Artikel.ArtikelNr = BestellPos.ArtikelNr

WHERE PosNr <= 2

16.

SELECT *

FROM Bestellung

WHERE BestellNr NOT IN

 (SELECT BestellNr

 FROM BestellPos INNER JOIN Artikel ON Artikel.ArtikelNr = BestellPos.ArtikelNr

 WHERE Gewicht = 1715)

17.

SELECT Zahlungsart.ZahlArtNr, Zahlungsart.Bezeichnung, Kunde.Name

FROM ((((Zahlungsart INNER JOIN Verwendet

 ON Zahlungsart.ZahlArtNr = Verwendet.ZahlArtNr)

 INNER JOIN Kunde ON Verwendet.KundenNr = Kunde.KundenNr)

 INNER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)

 INNER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr)

 INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr

WHERE Artikel.Name = 'C320'

47

18.

SELECT KundenNr, Name

FROM Kunde

WHERE KundenNr NOT IN

 (SELECT KundenNr

 FROM verwendet INNER JOIN Zahlungsart

 ON verwendet.ZahlArtNr = Zahlungsart.ZahlArtNr

 WHERE Bezeichnung = 'Kreditkarte')

19.

SELECT KundenNr, Name, Umsatz

FROM Kunde

WHERE KundenNr NOT IN (

 SELECT KundenNr

 FROM (Bestellung INNER JOIN BestellPos

 ON Bestellung.BestellNr = BestellPos.BestellNr)

 INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr

 WHERE Gewicht = 1715)

20.

SELECT DISTINCT Strasse, HNr, PLZ, Ort

FROM Kunde INNER JOIN Adresse ON Kunde.KundenNr = Adresse.KundenNr

WHERE Kunde.KundenNr NOT IN (

 SELECT KundenNr

 FROM (Bestellung INNER JOIN BestellPos

 ON Bestellung.BestellNr = BestellPos.BestellNr)

 INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr

 WHERE Gewicht = 1715)

21.

SELECT DISTINCT Zahlungsart.ZahlArtNr, Bezeichnung

FROM (Kunde INNER JOIN verwendet ON Kunde.KundenNr = verwendet.KundenNr)

 INNER JOIN Zahlungsart ON verwendet.ZahlArtNr = Zahlungsart.ZahlArtNr

WHERE Kunde.KundenNr NOT IN (

 SELECT KundenNr

 FROM (Bestellung INNER JOIN BestellPos

 ON Bestellung.BestellNr = BestellPos.BestellNr)

 INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr

 WHERE Gewicht = 1715)

Auf Basis der Firmen-Datenbank (vgl. Abb. 2):

22.

SELECT Mitarbeiter.PersonalNr, Vorname, Nachname

FROM Abteilung INNER JOIN Mitarbeiter

 ON Abteilung.AbteilungsleiterPersonalNr = Mitarbeiter.PersonalNr

WHERE Bezeichnung = 'Marketing'

48

23.

SELECT Mitarbeiter.PersonalNr, Vorname, Nachname

FROM Abteilung INNER JOIN Mitarbeiter

 ON Abteilung.AbteilungsNr = Mitarbeiter.ArbeitetInAbteilungsNr

WHERE Bezeichnung = 'Marketing'

24.

SELECT Abteilung.AbteilungsNr, Abteilung.Bezeichnung

FROM Abteilung INNER JOIN Mitarbeiter AS AbtLeiter

 ON Abteilung.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr

 INNER JOIN IstBefreundetMit ON (AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr1

 OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2)

 INNER JOIN Mitarbeiter AS p ON (IstBefreundetMit.PersonalNr1 = p.PersonalNr

 OR IstBefreundetMit.PersonalNr2 = p.PersonalNr)

 AND p.PersonalNr <> AbtLeiter.PersonalNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

25.

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit

 ON p.PersonalNr = IstBefreundetMit.PersonalNr1

 OR p.PersonalNr = IstBefreundetMit.PersonalNr2

 INNER JOIN Mitarbeiter AS freund

 ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr

 OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)

 AND freund.PersonalNr <> p.PersonalNr

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

26.

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit

 ON p.PersonalNr = IstBefreundetMit.PersonalNr1

 OR p.PersonalNr = IstBefreundetMit.PersonalNr2

 INNER JOIN Mitarbeiter AS freund

 ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr

 OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)

 AND freund.PersonalNr <> p.PersonalNr

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr

 INNER JOIN Standort ON Abteilung.StandortNr = Standort.StandortNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

49

27.

SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit

 ON p.PersonalNr = IstBefreundetMit.PersonalNr1

 OR p.PersonalNr = IstBefreundetMit.PersonalNr2

 INNER JOIN Mitarbeiter AS freund

 ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr

 OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)

 AND freund.PersonalNr <> p.PersonalNr

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr

 INNER JOIN Mitarbeiter AS AbtLeiter

 ON Abteilung.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

28.

SELECT DISTINCT MitarbInSelberAbt.PersonalNr,

 MitarbInSelberAbt.Vorname, MitarbInSelberAbt.Nachname

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit

 ON p.PersonalNr = IstBefreundetMit.PersonalNr1

 OR p.PersonalNr = IstBefreundetMit.PersonalNr2

 INNER JOIN Mitarbeiter AS freund

 ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr

 OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)

 AND freund.PersonalNr <> p.PersonalNr

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr

 INNER JOIN Mitarbeiter AS MitarbInSelberAbt

 ON Abteilung.AbteilungsNr = MitarbInSelberAbt.ArbeitetInAbteilungsNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

29.

WITH RECURSIVE Vorgesetzte AS (

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.Vorname,

 Mitarbeiter.Nachname, Mitarbeiter.VorgesetzterPersonalNr

 FROM Mitarbeiter

 WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Müller'

 UNION ALL

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.Vorname, Mitarbeiter.Nachname,

 Mitarbeiter.VorgesetzterPersonalNr

 FROM Mitarbeiter INNER JOIN Vorgesetzte

 ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr

)

SELECT PersonalNr, Vorname, Nachname

FROM Vorgesetzte

50

30.

WITH RECURSIVE Vorgesetzte AS (

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr,

 Mitarbeiter.ArbeitetInAbteilungsNr

 FROM Mitarbeiter

 WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Müller'

 UNION ALL

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr,

 Mitarbeiter.ArbeitetInAbteilungsNr

 FROM Mitarbeiter INNER JOIN Vorgesetzte

 ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr

)

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung

FROM Abteilung INNER JOIN Vorgesetzte

31.

WITH RECURSIVE Vorgesetzte AS (

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr

 FROM Mitarbeiter

 WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Müller'

 UNION ALL

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr

 FROM Mitarbeiter INNER JOIN Vorgesetzte

 ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr

)

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung, Standort.StandortNr,

 Standort.Ortsname

 FROM Vorgesetzte INNER JOIN Mitarbeiter

 ON Vorgesetzte.VorgesetzterPersonalNr = Mitarbeiter.PersonalNr

 INNER JOIN Abteilung ON Mitarbeiter.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr

 INNER JOIN Standort ON Abteilung.StandortNr = Standort.StandortNr;

32.

SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname

FROM Mitarbeiter AS AbtLeiter INNER JOIN Abteilung

 ON AbtLeiter.PersonalNr = Abteilung.AbteilungsleiterPersonalNr

 INNER JOIN IstBefreundetMit ON (AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr1

 OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2)

 INNER JOIN Mitarbeiter AS Vorgesetzter

 ON (IstBefreundetMit.PersonalNr1 = Vorgesetzter.PersonalNr

 OR IstBefreundetMit.PersonalNr2 = Vorgesetzter.PersonalNr)

 AND AbtLeiter.PersonalNr <> Vorgesetzter.PersonalNr

 INNER JOIN Mitarbeiter AS p ON Vorgesetzter.PersonalNr = p.VorgesetzterPersonalNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

51

33.

SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname

FROM Mitarbeiter AS p INNER JOIN Abteilung AS Abt1

 ON p.ArbeitetInAbteilungsNr = Abt1.AbteilungsNr

 INNER JOIN IstBefreundetMit

 ON (Abt1.AbteilungsleiterPersonalNr = IstBefreundetMit.PersonalNr1

 OR Abt1.AbteilungsleiterPersonalNr = IstBefreundetMit.PersonalNr2)

 INNER JOIN Abteilung AS Abt2

 ON (IstBefreundetMit.PersonalNr1 = Abt2.AbteilungsleiterPersonalNr

 OR IstBefreundetMit.PersonalNr2 = Abt2.AbteilungsleiterPersonalNr)

 AND Abt1.AbteilungsleiterPersonalNr <> Abt2.AbteilungsleiterPersonalNr

 INNER JOIN Mitarbeiter AS AbtLeiter

 ON Abt2.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller'

