LD

Hochschule Neu-Ulm
University of Applied Sciences

HNU Working Paper
Nr. 54

Thomas Bauer

Auswirkungen von auf kiinstlicher Intelligenz basierender
Generierung von SQL-Abfragen auf die Lehre

9/2025

Dr. Thomas Bauer, Professor flir Wirtschaftsinformatik mit Schwerpunkt Datenbanken,
Hochschule fir angewandte Wissenschaften Neu-Ulm

University of Applied Sciences

Wileystralte 1, D-89231 Neu-Ulm

LD

Hochschule Neu-Ulm
University of Applied Sciences

Abstrakt

Heutzutage ist es mdglich, sich mittels Kinstlicher Intelligenz automatisch Programmcode
generieren zu lassen. Dies gilt auch fir Datenbankabfragen, die in der Sprache SQL erstellt
werden. Diese Moglichkeit wirft die Frage auf, ob es Uberhaupt noch notwendig ist, SQL im
Rahmen von Datenbank-Vorlesungen zu lehren. Aufderdem ist zu klaren, inwieweit Studieren-
de die SQL-Generierung zur Erstellung von Prifungsergebnissen nutzen kénnen bzw. wie
Prifungen gestaltet sein missen, um entsprechende Betrugsversuche zu vermeiden. Hierzu
wird in dieser Arbeit der Stand der Forschung zum Thema SQL-Generierung dargestellt.
Aulerdem werden die Ergebnisse von Experimenten beschrieben, in welchen die Qualitat von
automatisch generierten SQL-Abfragen ermittelt wurde.

Freie Schlagworter: Datenbanken, SQL, Kinstliche Intelligenz, Large Language Model

JEL-Klassifikation: L86

LD

Hochschule Neu-Ulm
University of Applied Sciences

Inhaltsverzeichnis
L0] 1)Y= (o] o 4
0= = 100 = T F= YT P 4
N AT @ | I o [= Tl =T o PP ES 5
Analyse der Fahigkeit zur Generierung von SQL-Abfragen...........cccccceiiiiiiiiii 7
Verbesserung VON NL2SQLLuuiiiiiiieeee et e e e e e e e e e e e e e e 8
= V. | PR 9
Aufgabenstellungen fur Datenbank-Vorlesungen ... 10
VerWeNdEte SZENAIIEN. e aaaaeas 11
Durchfiihrung der EXperimente............oo e 13
Auffallige EinZelergebniSSe. i 16
UNZUIEANGIIChE LOSUNGENoiiiiiiiiiii ettt e e e e e e 16
Sonstige AUFAIIIGKEITENuuiiiiiiiiiiii e e e e e e e e e e eaas 32
= | PP PPEEPR 34
SChIUSSTOIGEIUNGEN ... e e e e e e e e e e e e e 35
SQL-Generierung in der betrieblichen Praxiscccccoee i 35
AUSWIrkUNGEN aUf di€ LENIEueiiiee e 36
Zusammenfassung, Limitationen und AusbliCK.............cooooviiiiiiiiieeeeee 37
) (=T = (0 38
Anhang A: Ubersicht (iber die AufgabenstellUNgenc.cccoveeeeeeeee e 41
Anhang B: Mdgliche Lésungen fur die Aufgabenstellungencccccooiiiiiiiiiiiiiiieeeeen 44

LD

Hochschule Neu-Ulm
University of Applied Sciences

Motivation

Kunstliche Intelligenz (KI) ist inzwischen sehr gut in der Lage, Texte zu generieren. Mit einem
entsprechenden Large Language Model (LLM) kann auch Programmcode generiert werden. Im
Kontext von Datenbanken sind dies Abfragen in SQL. Es wird hierbei eine natlrlichsprachliche
Aufgabenstellung vorgegeben und zusatzlich das Datenbank-Schema, das die zugrunde
liegenden Datenbank-Tabellen beschreibt. Das LLM generiert daraus eine Abfrage in der
Sprache SQL (Natural Language to SQL: NL2SQL).

In dieser Arbeit wird untersucht, wie gut die Fahigkeit heutiger LLMs hierbei sind. Dabei liegt
der Fokus auf Auswirkungen, die sich auf die Lehre zum Thema Datenbanken ergeben. Die
Forschungsfrage lautet also: Welche Qualitat haben aktuell automatisch generierte SQL-
Abfragen und welche Konsequenzen ergeben sich daraus fur die Lehre?

Hierbei werden die folgenden beiden Teilaspekte betrachtet:

1) Korrektheit: Fir den Fall, dass es mittels eines LLM méglich ist, stets (d.h. fir alle Aufgaben-
stellungen) eine (fast) zu 100% korrekt SQL-Abfrage zu generieren, besteht keine Notwendig-
keit mehr, SQL-Kenntnisse zu lehren. Diese hatten dann allenfalls den Zweck, die generelle
Funktionsweise von Datenbanksystemen besser zu verstehen. Falls jedoch manchmal oder fir
bestimmte Aufgabenstellungen oder Datenbank-Schemata fehlerhafte SQL-Abfragen generiert
werden, sind weiterhin SQL-Kenntnisse erforderlich, z.B. zum Uberprl'jfen und Verbessern der
generierten SQL-Anweisungen.

2) Prifungsgestaltung: Wenn LLMs lediglich in der Lage sind, relativ haufig korrekte SQL-
Abfragen zu generieren, dann sollten diese (wie erwahnt) nicht unbesehen verwendet werden.
Dennoch bieten sie Studierenden die Méglichkeit, ohne ausreichende SQL-Kenntnisse und bei
geringem Aufwand, Lésungen fur Prifungsaufgaben zu erzeugen. Sind viele der generierten
SQL-Abfragen korrekt oder beinhalten nur kleinere Fehler, so wird mit dieser Vorgehensweise
eine recht gute Note erzielt werden. In diesem Fall sollten Priifungen so gestaltet sein, dass
durch dieses Betrugspotential kein gro3er Vorteil gegentiber Studierenden erzielt werden kann,
die ihre Prifungsergebnisse selbst erstellen.

Im nachfolgenden Abschnitt wird wissenschaftliche Literatur zum Thema NL2SQL dargestellt.
Darauf folgt eine Beschreibung der durchgefuhrten Experimente und deren Ergebnisse. Diese
haben das Ziel, die heutige Qualitat von NL2SQL in Szenarien zu ermitteln, die bzgl.
Komplexitat des Datenbank-Schemas und Schwierigkeitsgrad tblichen Lehr- und Prifungs-
inhalten entsprechen. Darauf folgt ein Abschnitt, der Schlussfolgerungen fur die Lehre zieht.
Der Betrag schlief3t mit einer kurzen Zusammenfassung der wichtigsten Erkenntnisse.

Literaturanalyse

Im Gesamtthema der Generierung von SQL-Abfragen, ausgehend von einer in naturlicher
Sprache vorgegebenen Problemstellung (NL2SQL), findet aktuell viel Forschung statt. Dies ist
auch daran erkennbar, dass die meisten der nachfolgend dargestellten Veroffentlichungen
recht neu sind. Bei einigen Arbeiten handelt es sich sogar um Vorab-Veroffentlichungen. Diese
wurden berucksichtigt, obwohl ihre Qualitat noch nicht durch einen Peer-Review-Prozess
bestatigt ist, um so einen sehr aktuellen Stand der Forschung darstellen zu kénnen.

Im Folgenden wird zuerst Literatur zu dem Thema NL2SQL im Kontext von Lehre dargestellit.
Das darauf folgende Unterkapitel beschaftigt sich mit der Bewertung des aktuellen Standes der

4

LD

Hochschule Neu-Ulm
University of Applied Sciences

SQL-Generierung. Schliellich werden noch Ansatze vorgestellt, die das Ziel haben, NL2SQL
selbst zu verbessern.

NL2SQL in der Lehre

Da in dieser Arbeit insbesondere die Auswirkungen von NL2SQL auf die zukiinftige Lehre
untersucht werden sollen, wurde gezielt nach Literatur zu diesem Thema gesucht.! Dabei
wurden keine Arbeiten gefunden, die zu erwartende Veranderungen der erforderlichen
Kompetenzen von Studierenden oder zuklinftig (noch) notwendige Lehrinhalte beschreiben.
Allerdings erwahnen einige Autoren (Dixit and Gajjam, 2024; Ganesan et al., 2024; Hong and
Storey, 2023; Taipalus and Seppanen, 2020) von nachfolgend dargestellten Arbeiten die
Wichtigkeit von SQL-Kenntnissen fur Studierende, allerdings ohne speziell hierzu eine Studie
durchgefihrt zu haben. Da sich diese Arbeiten jedoch mit dem generellen Thema ,Kl und
Datenbanken® beschaftigen, impliziert dies, dass die Autoren diese Kenntnisse auch weiterhin
fur erforderlich halten.

Zudem ergab die erwahnte Literatursuche sehr viele Veréffentlichungen, die sich mit dem
Lernen eines neuronalen Netzes bzw. eines LLMs mittels Trainingsdaten beschéaftigen. Diese
Art des ,Lernens® ist im vorliegenden Kontext nicht relevant, weshalb entsprechende Arbeiten
im Folgenden nicht dargestellt werden.

Es wurden Arbeiten zu den nachfolgend beschriebenen Themen identifiziert:

(Taipalus and Seppanen, 2020) bietet einen ausfiihrlichen Uberblick tiber Arbeiten zum Thema
SQL-Ausbildung. Die Arbeit enthalt jedoch keine Aussagen zu den Themen generative Ki,
NL2SQL oder den durch diese Technologie resultierenden Auswirkungen auf erforderliche
SQL-Kenntnisse.

Einige Arbeiten beschaftigen sich mit dem Einsatz von Kl oder generell von Softwarelésungen
beim Unterrichten von SQL.:

(Prakash et al., 2024) verwendet nicht ausschliellich ein Standard-Produkt (wie z.B. ChatGPT)
zur Generierung von SQL-Abfragen, sondern schlagt hierfur eine speziell entwickelte
Architektur vor. Mit dieser kdnnen sich Studierende SQL-Abfragen generieren lassen. Sie
konnen aber auch selbst solche Abfragen erstellen und an das Tool tibergeben. Dieses fiihrt
sie dann aus und analysiert das Ergebnis. Ist letzteres falsch, werden den Studierenden
Quizfragen zum betroffenen Thema gestellt.

(Zhang, 2025) nutzt eine Kl zur Generierung von SQL-Abfragen im Rahmen einer Lehrveran-
staltung. Dazu erhalten die Studierenden verschiedene Aufgaben (einschlieRlich dem Andern
und Abfragen von Daten mittels SQL), welche sie selbst I6sen sollen und zu denen sie sich
zusatzlich eine Losung von der Kl generieren lassen sollen. Die Studierenden lernen hierbei
unterschiedliche Vorgehensweisen kennen und kdnnen diese kritisch vergleichen.

(Carr et al., 2023) beschaftigt sich mit der Problemstellung, dass es schwierig ist, von
Studierenden erstellte SQL-Abfragen automatisch auf Korrektheit zu Uberprifen, weil auch
korrekte SQL-Abfragen sehr stark von der Musterlésung abweichen kdnnen. Deshalb wird
ChatGPT verwendet, um weitere Losungen fur SQL-Abfragen aus den natirlichsprachlichen

' Hierzu wurde eine Suche in Google-Scholar durchgeflhrt, wobei nach NL2SQL jeweils in Kombination
mit education, teaching, student, Lehre oder Unterricht gesucht wurde. Au3erdem wurde nach ,SQL
generation” in Kombination mit einem der letzteren Begriffe gesucht. Schlielich wurde auch noch eine
Suche nach den Begriffen SQL education artificial intelligence durchgefunhrt.

LD

Hochschule Neu-Ulm
University of Applied Sciences

Aufgabenstellungen zu generieren. Diese werden verwendet, um sie mit den Lésungen der
Studierenden zu vergleichen. In der Arbeit wurde erkannt, dass diese Vorgehensweise gute
Ergebnisse liefert, so dass sie in der Lehre eingesetzt werden kann.

(Hong and Storey, 2023) skizziert einen Ansatz, bei dem ChatGPT, zum Zweck der Lehre, u.a.
SQL-Statements generieren und den Studierenden die zugrunde liegende Idee erlautern soll.
Allerdings wird in dieser Arbeit ein erst kiirzlich gestartetes Projekt beschrieben, so dass noch
keine fundierten Erkenntnisse vorliegen. So ist z.B. noch unklar, wie der Erfolg dieser
Vorgehensweise gemessen werden kann und wie sich die Rolle eines Lehrenden dadurch
verandert.

(Dixit and Gajjam, 2024) mochte das Lernen von SQL mittels des Kl-Tools AI2SQL.io ver-
bessern. Dieses Uibernimmt die Rolle eines Tutors, indem es den Studierenden wahrend ihrer
SQL-Ubungen Feedback gibt. Diese Automatisierung erlaubt es (auch bei einer groRen
GruppengroRe), fiir jede einzelne Ubungsaufgabe sofort Feedback z.B. bzgl. Fehlern zu
geben. Es wird also ein individuelles Feedback mdglich und zugleich der erforderliche Zeit-
aufwand fir Lehrende reduziert.

Auch in (Matek et al., 2017) wird eine Kl als Tutor eingesetzt. Diese generiert Hinweise auf
Basis von Lésungen, welche die Studierenden vorheriger Jahrgange erstellt haben. Die
aktuellen Studierenden erstellen SQL-Abfragen (fir dieselben Ubungsaufgaben) und kénnen
diese wahlweise ausfiihren oder die Kl nach einem Hinweis fragen. Dieser besteht darin, dass
die aktuelle SQL-Abfrage von der Kl angepasst wird. Diesen Hinweis kdnnen die Studierenden
benutzen oder aber auch ignorieren, um so zu einer korrekten Losung zu gelangen.

Auch das in (Ganesan et al., 2024) vorgestellte Tool SQLearn prift von Studierenden erstellte
SQL-Abfragen auf Korrektheit. Allerdings wird hierfur kein Kl-basierter Ansatz verwendet,
sondern die Ahnlichkeit zu einer Referenz-Abfrage (der Musterldsung) wird automatisch
bewertet. Eine Einschrankung dieses Ansatzes im Vergleich zu den zuvor vorgestellten Ki-
basierten Ansatzen ist deshalb, dass lediglich das Feedback ,korrekt®, ,falsch® oder ,teilweise
korrekt® moglich ist.

(Steinberger and Wedam, 2025) stellt einen Ansatz vor, der es ermdglicht, mittels einer K,
Material fiir Ubungen automatisch zu generieren. Dieses umfasst Datenbanken mit Beispiel-
daten, Ubungsaufgaben und Musterldsungen. Das Ziel dieses Ansatzes ist, den Arbeitsauf-
wand fur Lehrende zu reduzieren. Einen dhnlichen Ansatz verfolgt (Zhang, 2025). Dort wird
vorgeschlagen, sich Unterrichtsmaterial, wie z.B. Quizfragen, Ubungsaufgaben und Vor-
lesungsfolien von einer Kl generieren zu lassen. Generell spart ein solches Vorgehen sicherlich
Aufwand ein, ist aber recht unabhangig von dem in diesem Bericht behandelten Thema SQL,
so dass auf andere ahnliche Ansatze hier nicht eingegangen wird.

(Farinetti and Cagliero, 2025) verwendet kein spezielles Tool, sondern die Studierenden sollten
direkt mit ChatGPT arbeiten: Sie sollen natirlichsprachliche Aufgabenstellungen entwickeln,
bei denen ChatGPT fehlerhafte Losungen fir die zugehdrige SQL-Abfrage generiert. AulRer-
dem erstellen die Studierenden selbst eine korrekte Losung fur die SQL-Abfragen. Ziele dieses
Experiments sind, dass sich Studierende mit komplizierten Abfragen beschaftigen (da die K
bei solchen eher Fehler macht) und sie sich bewusst werden, dass die Kl-generierten
Lésungen durchaus fehlerhaft sein kénnen. Im durchgefiihrten Experiment waren in letzteren
sogar mehr Fehler als in den von den Studierenden manuell erstellten Lésungen. Insgesamt

LD

Hochschule Neu-Ulm
University of Applied Sciences

soll der Gamification-Aspekt motivationssteigernd wirken, weshalb das Experiment auf diese
Art und Weise gestaltet wurde.

(Gaitantzi and Kazanidis, 2025) analysiert 31 Studien zum Thema Kl-Unterstitzung bei der
Lehre zum Thema Software-Entwicklung (und hierbei teilweise auch mit dem Thema SQL oder
zumindest Datenbanken). In den analysierten Studien wurden KlI-Tools fiir die bereits
genannten Zwecke eingesetzt: zur Generierung von Programmcode (d.h. SQL-Abfragen), als
automatisierter Tutor und zur Generierung von Lehrmaterial. Die Studien erkennen einen
Nutzen durch die Verwendung von KiI, z.B. weil (auch bei gro3en Gruppen) ein personliches
sowie sofortiges Feedback mdglich wird. Allerdings werden auch Probleme der Ansatze
benannt, wie z.B. Fehler im generierten Inhalt oder eine entstehende Abhangigkeit der
Studierenden von der K.

Analyse der Fédhigkeit zur Generierung von SQL-Abfragen

Im Folgenden werden Arbeiten vorgestellt, welche die heutige Qualitdt von NL2SQL bewerten.
Zu diesem Zweck existieren auch einige Benchmarks, die aus einer Sammlung von Beispiel-
tabellen und natirlichsprachlichen Abfragen an diese bestehen.

Kernaussage von (Floratou et al., 2024) ist, dass das Problem der SQL-Generierung (NL2SQL)
aktuell noch nicht geldst ist. Die Arbeit benennt konkrete Probleme hierbei, wie z.B. sehr viele
Tabellen und Spalten in einer realistischen (d.h. praxisnahen) Datenbank. Hierzu wird als
Beispiel das Microsoft-interne Data-Warehouse fir Finanzdaten mit 632 Tabellen und tber
4000 Spalten (weitere in Views) vorgestellt. Ein solch komplexes Szenario ist fir Lehr-Beispiele
und -Ubungen natiirlich nicht sinnvoll, zeigt jedoch, dass bei dem Thema noch viele ungeldste
Probleme bestehen. Zudem werden als weitere Schwierigkeiten in der Praxis genannt, dass
Abfragen in natirlicher Sprache oft nicht eindeutig sind und Endbenutzer die Semantik (d.h.
tatsadchliche Bedeutung) der Tabellen und deren Spalten nicht kennen, was jedoch fur eine
exakte Formulierung von naturlichsprachlichen Abfragen erforderlich ist. All dies fihrte in
dieser Arbeit zu einer durchschnittlichen Korrektheit von nur 22,7% bei der Generierung von
SQL-Abfragen.

Ahnliche Probleme werden auch in (Liu et al., 2025) und (Mohammadjafari et al., 2025)
genannt.

In (Nascimento et al., 2025) werden Experimente vorgestellt, die mit einer realen Datenbank
(d.h. aus der Praxis) durchgefiihrt wurden. Die mit GPT-4 generierten SQL-Abfragen waren
dabei nur zu 41% korrekt.

(Liu et al., 2023) untersucht die Qualitat generierter SQL-Abfragen fir den Fall, dass dem LLM
im Prompt keine besondere Unterstlitzung (z.B. durch Beispiele) gegeben wird (Zero-Shot).
ChatGPT erreichte bei diesen Tests eine Korrektheit von max. 76,6%, wobei diese allerdings
fur andere Arten von Problemstellungen deutlich schlechter war. Das LLM, das bei dem Test
am besten abgeschnitten hat, erreichte 84,1% Korrektheit. Auffallig war, dass dieses seinen
besten Korrektheitswert bei anderen Problemstellungen erreichte als ChatGPT. Als generelle
Erkenntnis I&sst sich festhalten, dass keine der LLMs eine nahezu absolute Korrektheit erreicht
hat.

(Sun et al., 2023) untersucht die Qualitat generierter SQL-Abfragen fir verschiedene LLMs,
wobei auch verschiedene Arten des Abbaus der Prompts bertcksichtigt werden. Das beste
Ergebnis erziele hierbei ChatGPT 3.5, wobei die Korrektheit abhangig vom Prompt-Aufbau im

LD

Hochschule Neu-Ulm
University of Applied Sciences

Intervall 31,1% bis 70,9% lag. Eine solche Abhangigkeit wurde auch fur andere LLMs fest-
gestellt, wobei bei diesen teilweise ein anderer Prompt-Aufbau optimal war, als bei ChatGPT.
Auch (Campos et al., 2025) ermittelt mittels Experimenten die Korrektheit von generierten SQL-
Abfragen. Allerdings sind diese sehr einfach strukturiert, da die Datenbank aus nur einer
einzigen Tabelle besteht (mit jedoch sehr vielen Zeilen). Die ermittelte Korrektheit lag,
abhangig vom LLM-Modell, zwischen 10% und 96%, d.h. auch bei solch einfachen Abfragen
I&sst sich keine absolute (d.h. sichere) Korrektheit erreichen. Um die Korrektheit zu messen,
wurde in einem ersten Schritt verglichen, ob die generierte Abfrage exakt der manuell erstellten
Soll-Abfrage entspricht. Falls dies nicht zutrifft, wurden in einem zweiten Schritt beide Abfragen
ausgefuhrt und die Ergebnisse auf Gleichheit geprift. Ein solches Vorgehen ist nattrlich nur
bei einer ausreichend groRen Anzahl von Beispieldaten sinnvoll, weil sonst haufig der Fall
auftritt, dass die Ergebnisse einer (leicht) falschen Abfrage zufallig identisch sind.

In (Pornphol and Chittayasothorn, 2023) wird der spezielle Aspekt der Vollstandigkeit unter-
sucht: Eine Datenbank-Abfragesprache gilt als vollstandig, wenn sie mindestens die Machtig-
keit der Relationenalgebra aufweist. Als Relationenalgebra wurden die von Codd in seiner
Originalpublikation vorgeschlagenen 8 Operationen definiert. Anhand von 5 Beispielen wurde
festgestellt, dass ChatGPT korrekte SQL-Abfragen erstellen kann, welche alle Operationen
abdecken. Dies lasst die Aussage zu, dass ChatGPT bzgl. der generierten SQL-Abfragen
vollstandig ist.

Zur Bewertung von generierten SQL-Abfragen existieren verschiedene Benchmarks wie BIRD
(Li et al., 2023), Spider (Yu et al., 2019), UNITE (Lan et al., 2023), TrustSQL (Lee et al., 2024)
und TPC-DS (Poess and Floyd, 2000). Letzter umfasst Abfragen, die aus dem Bereich
,Decision-Making“ stammen und deshalb zu besonders komplexen SQL-Abfragen fuhren.
Dieser Benchmark wurde in (Ma et al., 2024) verwendet, um die Abfrage-Generierung von 11
LLMs zu bewerten. Das Ergebnis zeigt, dass hierbei selbst die besten LLMs lediglich eine
Korrektheit von 33% erreichen. (Lee et al., 2024) zeigt unter Verwendung des Benchmarks
TrustSQL, dass heutige NL2SQL-Methoden noch nicht zufriedenstellend funktionieren.

Die begrenzte Aussagekraft von Benchmarks wird in (Ganti et al., 2024) aufgezeigt, da in
Protokolldateien enthaltene reale Abfragen eine um ca. 30% geringere Korrektheit aufweisen,
als die Abfragen der Benchmarks. Als Grunde hierfur wurden Tabellen mit einer grof3en Anzahl
an Spalten, nicht eindeutige (aber realistische bzw. praxisnahe) Abfragen, sowie komplexe
oder verschachtelte resultierende SQL-Abfragen identifiziert.

(Kim et al., 2020) zeigt fur mehrere Benchmarks und unterschiedliche LLMs die begrenzte
Aussagekraft der erzielten Ergebnisse auf. Die Bewertung der Korrektheit der generierten SQL-
Abfragen muss, wegen der grolden Anzahl an ausgefiihrten Testfallen, normalerweise
automatisch erfolgen. Hierflr existieren unterschiedliche Methoden, die aber alle zu
Falschbewertungen fiihren kdnnen. Durch Experimente wird gezeigt, dass sich je nach
gewahlter Methode deutliche Fehler ergeben, d.h. ein konkret angegebener Prozentsatz fir die
Korrektheit sollte nicht ,lUberinterpretiert” werden.

Verbesserung von NL2SQL

Einige Ansatze verfolgen das Ziel, die Qualitat von generierten SQL-Abfragen zu verbessern.
(Shi et al., 2024) bietet hierzu einen Uberblick, der u.a. Ansétze zum Prompt-Engineering oder
Finetuning von Trainingsmethoden, -daten und zur Modellevaluation beinhaltet. Diese Ansatze

LD

Hochschule Neu-Ulm
University of Applied Sciences

werden nicht durch Experimente verglichen, so dass keine unmittelbare Aussage zu deren
Leistungsfahigkeit gemacht wird. Stattdessen wird ein inhaltlicher Vergleich durchgefihrt.

(Liu et al., 2025) bietet ebenfalls einen sehr umfassenden Uberblick Giber Methoden zur SQL-
Generierung, wobei auch detailliert auf technische Aspekte von deren Umsetzung eingegangen
wird. Dies ist auch der Fokus von (Qin et al., 2022).

(Zhang et al., 2024) untersucht verschiedener Einzelaufgaben von NL2SQL in Bezug z.B. auf
Qualitat und Ausfuhrungsgeschwindigkeit der generierten SQL-Statements.

(Gao et al., 2023) betrachtet verschiedene Methoden zum Prompt-Engineering im Kontext der
SQL-Generierung. Auf dieser Basis wird eine ,In-Context-Learning“-Methode fir LLMs ent-
wickelt. Hierbei werden in dem Prompt einige Beispiele bereitgestellt, aus denen das LLM lernt.
Durch Experimente wird bestatigt, dass dies die Korrektheit der generierten SQL-Abfragen
verbessern kann.

In (Dong et al., 2023) wird eine Methode vorgestellt, die speziell Schwachstellen von ChatGPT
bei der Generierung von SQL-Abfragen beheben soll: Das Prompt wird auf eine vorgegebene
Weise strukturiert und dabei nur fur diese Abfrage relevante Tabellen und Spalten angegeben
bzw. bzgl. ihrer Relevanz bewertet. Zusatzlich werden Hinweise bereitgestellt, z.B. welche
Spalten nicht benétigt werden, oder dass ein Left Outer Join nur verwendet werden soll, wenn
tatsachlich ein Outer Join bendtigt wird. SchlieRlich werden mehrere SQL-Abfragen durch
ChatGPT generiert und ausgefihrt, woraufhin die beste ausgewahlt wird.

(Mohammadjafari et al., 2025) bewertet verschiedene NL2SQL-Ansatze bzgl. der Korrektheit
der erzeugten SQL-Statements und deren Effizienz (d.h. Ausfihrungsgeschwindigkeit und
notwendige Ressourcen). Als Ergebnis wird unter anderem die Verwendung von Knowledge-
Graphen empfohlen. Diese definieren die Beziehungen zwischen Entitaten, Tabellen und
Attributen und helfen bei der Generierung von SQL-Statements. Allerdings ist die Erstellung
eines solchen Knowledge-Graphen flir den Benutzer eine aufwendige Aufgabe. Auch
(Nascimento et al., 2025) verwendet solche Graphen. Durch Experimente wurde bestatigt,
dass sich dadurch die Korrektheit der generierten SQL-Abfragen verbessern Iasst. Allerdings
wurde dadurch und durch weitere MaRnahmen lediglich eine Korrektheit von 93% erreicht, d.h.
eine absolute Korrektheit der generierten Ergebnisse war nicht méglich.

Bei dem Ansatz von (Biswal et al., 2024) wird aus der Benutzeranfrage eine SQL-Query
generiert und ausgefiihrt. Zusatzlich zum Abfrageergebnis wird dann die natirlich-sprachige
Anfrage verwendet, um eine Antwort flir den Benutzer zu generieren. Mit diesem Ansatz lassen
sich zusatzliche Typen von Benutzeranfragen beantworten.

(Bhaskar et al., 2023) untersucht Szenarien, in denen die fiir eine bestimmte Abfrage zu
generierende SQL-Abfrage nicht eindeutig ist. Dieser Fall kann z.B. aufgrund uneindeutiger
Namen von Tabellen oder Spalten sowie aufgrund verwirrender Beziehungen auftreten.
Idealerweise sollten dann alle moglicherweise gewlinschten SQL-Abfragen generiert und dem
Benutzer bereitgestellt werden. Durchgeflihrte Tests ergaben jedoch, dass dies bei heutigen
LLMs nicht der Fall ist. Deswegen wurde in dieser Arbeit ein neuartiger Algorithmus entwickelt,
um diesen Fall besser handhaben zu kdnnen.

Fazit

Zusammenfassend I&sst sich feststellen, dass die Problemstellung der Generierung von SQL-
Abfragen aktuell nicht gelost ist. Daraus lasst sich schlieRen, dass es flr Mitarbeiter aktuell

LD

Hochschule Neu-Ulm
University of Applied Sciences

noch notwendig ist, korrekte SQL-Abfragen erstellen zu kdnnen. Die teilweise hohe Fehler-
quote bei NL2SQL I&sst vermuten, dass dies auch noch langere Zeit gelten wird. Zumindest
missen die Mitarbeiter weiterhin fahig sein, die generierten SQL-Abfragen auf ihre Korrektheit
hin zu Gberprufen. Dies erfordert sehr ahnliche SQL-Kenntnisse, wie die Erstellung solcher
Abfragen. Deswegen ist es weiterhin erforderlich, dass SQL in Lehrveranstaltungen zum
Thema Datenbanken enthalten ist. Es konnte jedoch keine wissenschaftliche Literatur
identifiziert werden, die Aussagen zu diesem Thema machen, hier existiert also eine
Forschungsliicke.

Die Ergebnisse von NL2SQL-Bewertungen mittels Benchmarks fallen sehr unterschiedlich aus.
Zudem wird in einigen Arbeiten betont, dass deren Aussagekraft begrenzt ist. Eine Bewertung
von LLMs mittels Benchmarks ist flr die vorliegende Forschungsfrage ohnehin wenig hilfreich,
weil ein bestimmter Prozentsatz fir die Korrektheit keine direkten Riickschlisse auf erforder-
liche Lehrinhalte zuldsst. Stattdessen sind solche Benchmarks eher nitzlich, um neu ent-
wickelte Ansatze fir NL2SQL bewerten und mit existierenden vergleichen zu kénnen. Da eine
Entwicklung neuer Ansatze nicht unser Ziel ist, werden im Folgenden keine Benchmarks
verwendet.

Ansatze zur Verbesserung der generierten SQL-Abfragen, wie z.B. eine spezielle Prompt-
Gestaltung (z.B. In-Context-Learning) oder die Erstellung von Knowledge-Graphen sind zu
aufwendig, um in einer Vorlesung im Grundstudium behandelt zu werden. Aufgrund des
Aufwands kann vermutet werden, dass solche Verfahren von Studierenden wohl kaum genutzt
werden, wenn einige SQL-Abfragen z.B. im Rahmen einer Projektarbeit zu erstellen sind.
Ahnliches gibt wohl auch fiir Mitarbeiter in Unternehmen, die spontan eine einzelne oder einige
wenige SQL-Abfragen, z.B. zur Berechnung von Statistiken, erstellen sollen. Deswegen wird
auch dieses Thema hier nicht weiter verfolgt.

Wie bereits beim Thema Benchmarks erwahnt, ist die Verbesserung der internen Funktionalitat
von LLMs bei der Generierung von SQL-Abfragen im Kontext von Lehre ebenfalls nicht
relevant.

Deshalb werden im Folgenden nur einige wenige Test mit unterschiedlichen LLMs durch-
geflhrt, die sich allerdings am Schwierigkeitsgrad von Aufgabenstellungen aus der Lehre
orientieren. Es ist dabei nicht das Ziel, die Korrektheit dieser LLMs so detailliert zu vergleichen,
dass sich die Ergebnisse verallgemeinern lassen wiirden. Stattdessen soll lediglich Gberprift
werden, ob diese tatsachlich keine 100%ige Korrektheit fir solch einfache Problemstellungen
erreichen.

Aufgabenstellungen fur Datenbank-Vorlesungen

In diesem Abschnitt werden die Ergebnisse einiger Experimente vorgestellt. Hierbei ist das
Ziel, zu untersuchen, welche Ergebnisse Studierende erzielen werden, wenn sie sich ihre
Aufgabenstellungen (z.B. aus Projektarbeiten oder Prufungen) von einer Kl generieren lassen.
Deshalb wurde auch nicht versucht, speziell fiir SQL geeignete Kl-Plattformen oder
Vorgehensweisen zu verwenden, da diese den Studierenden wohl nicht bekannt sind.
Stattdessen wurden die folgenden ,populdren” (z.B. aus Medien bekannten) LLMs getestet:

1. Microsoft Copilot in der von der HNU lizensierten Version. Diese verwendete zum

Zeitpunkt der Tests ChatGPT in der Version GPT4

10

LD

Hochschule Neu-Ulm
University of Applied Sciences

2. ChatGPT in der Uber openai.com &ffentlich und kostenlos zuganglichen Version. Dies
war bei Durchflihrung der Experimente die Version GPT-4-turbo

3. DeepSeek in der Version V3
Auch der Schwierigkeitsgrad der Aufgabenstellungen und die Komplexitat des zugrunde
liegenden Datenbank-Schemas orientieren sich an dem, was in einer (ersten) Vorlesung zum
Thema Datenbanken Ublicherweise zu erwarten ist. Es sind also keine extrem komplexen
Abfragen zu erstellen und die Datenbank enthalt nicht besonders viele Tabellen und Spalten.
Dementsprechend generieren die LLMs deutlich bessere Ergebnisse, als die in der Literatur
erwahnten, z.B. in einem realistischen betrieblichen Umfeld oder bei komplexen Benchmarks
(vgl. Abschnitt ,Literaturanalyse®).

Verwendete Szenarien

Wie bereits erwahnt, soll die Komplexitat der verwendeten Datenbanken dem entsprechen,
was in einer Vorlesung zum Thema Datenbanken zu erwarten ist. Im ersten Szenario werden
Kunden, sowie ihre Adressen, Bestellung, Rechnungen etc. gespeichert. Dieses stammt
(ebenso wie die Abfragen 1 bis 18, s.u.) aus einer Datenbankvorlesung, welche im 1. bzw. 2.
Semester in ,Wirtschaftsinformatik-artigen“ Studiengangen an der HNU angeboten wird.

Abb. 1a zeigt das entsprechende Entity-Relationship-Diagramm (um die Bedeutung der Inhalte
ohne langere textuelle Erklarung verstandlich zu machen). Abb. 1b stellt die daraus
resultierenden Datenbanktabellen als EER-Diagramm in MySQL-Workbench dar
(Primarschlissel sind mit einem Schllissel-Symbol markiert, Fremdschliissel haben ein rotes
Symbol).

Das in diesen Vorlesungen verwendete Szenario enthalt keine Entitatstypen, zwischen denen
es mehrere Beziehungen gibt. AuBerdem ist keine (rekursive) Beziehung eines Entitatstyps mit
sich selbst enthalten. Dies schrankt die Menge an mdglichen Aufgabenstellungen ein. Deshalb
wurden auch Experimente mit einem zweiten Szenario durchgefihrt, in dem u.a. Mitarbeiter,
die Abteilung, in der sie arbeiten bzw. die sie leiten, sowie Standorte gespeichert werden.

Abb. 2a stellt das Szenario dieser Firmen-Datenbank wieder als Entity-Relationship-Diagramm
dar und Abb. 2b die Tabellen als EER-Diagramm. Dieses Szenario erlaubt komplexere Auf-
gabenstellungen, in welchen z.B. die Beziehungen ,arbeitet in“ und ,leitet* gemeinsam oder so-
gar mehrfach benutzt werden mussen. AuRerdem werden Abfragen moglich, welche Rekursion
erfordern (in SQL eine sog. Common Table Expression: CTE), z.B. um auch indirekte Vorge-
setzte zu berechnen. Solche Aufgabenstellungen und -arten sind fiir Datenbank-Vorlesungen
durchaus angemessen, allerdings eher in reinen Informatik-Studiengadngen. Eine entsprechen-
de Komplexitat von SQL-Abfragen ist auch in einem betrieblichen Umfeld selbst fur Berufs-
einsteiger realistisch.

11

vy

University of Applied Sciences

a)

Zahlungsart

6 Mindestbetrag

Bezeichnung

N ‘ Adresse

reichbar
inte

Kunde

W

‘ Problemkunde Premiumkunde |

ahlungs= ey Accoun unden-
ausfalle Manager bewertun

usge®
ost i
T [Cpaum

| Rechnung p Bestellung |
RechnungsNr @ L
N
Artlkel Bestellposition
ArtlkeINr Marke
3 Zahlungsart v] Adresse v
ZahlArtNr VARCHAR(10) Strasse VARCHAR(40)
Bezeichnung VARCHAR(45) HausNr VARCHAR(15
(15)] Liefersuche v
Mindestbetrag DECIMAL(12,2) PLZ VARCH
- (EERNL SuchNr VARCHAR(10)
> VARCHAR(4
Ort VARCHAR(45) Status VARCHAR(25)
f— Ad VARCHAR(20
resstyp (Startdatum VARCHAR(1
v A
] verwendet & KundenNr VARCHAR(18) ——
! ZahlArtNr VARCHAR(10) = =
! KundenNr VARCHAR(18) vV +
> i |
_] Kunde v [
|
=] Problemsiamde v 1 | KundenNr VARCHAR(18) |
AnzZahlAusfaelle INT ‘ Name VARCHAR(60) e +
| Bestellung v
Ausfallsumme DECIMAL(12, Umsatz DECIMAL(12,2) | - h
BestellNr VARCHAR(15
? KundenNr VARCHAR(18) > L] 5)
> Datum VARCHAR(20)
1~ -H{ @ KundenNr VARCHAR(18)
] premiumkunde ¥ : >
Rechn: v
! KundenNr VARCHAR(18) m ung I
KeyAccountMgr VARCHAR(50) REONEROREY :
> Gesamtpreis DECIMAL(12,... Ly — =
BestellNr VARCHAR(15)
_] Artikel v >
| BestellPos ¥
ArtikelNr VARCHAR(20)
! BestellNr VARCHAR(15)
Name VARCHAR(45)
PosNr INT
Marke VARCHAR(45)
e —J<< © Preis DECIMAL(12,2)
Gewicht FLOAT
Anzahl INT
Herstellkosten DECIMAL(12,
¥ ArtikelNr VARCHAR(20)
Verkaufspreis DECIMAL(12,2) |

>
>

Abb. 1: a) Entity-Relationship-Diagramm und b) Datenbank-Tabellen der Kunden-Datenbank

12

LD

Hochschule Neu-Ulm
University of Applied Sciences

a)

ar-
beitet AbteilungsNr

in

PersonalNr

Abteilung |
N

1

‘ Standort |

b) _ Mitarbeiter v
PersonalNr INT

Hi= —
Vorname VARCHAR(45) :
Nachname VARCHAR(45) —/
ArbeitetInAbteilungsNr INT

» VorgesetzterPersonalNr INT BH—1

I

| _ Abteilung v
F : AbteilungsNr INT
: Bezeichnung VARCHAR(45)
|

AbteilungsleiterPersonalNr INT

I

I

& StandortNr INT 1

_] IstBefreundetMit ¥ T

v
! PersonalNr1 INT _] standort
Nr INT
! PersonalNr2 INT StandortNr IN
Ortsname VARCHAR(45)

>

Seit DATETIME
>

Abb. 2: a) Entity-Relationship-Diagramm und b) Datenbank-Tabellen der Firmen-Datenbank

Durchfiihrung der Experimente

Zur Beantwortung der Frage, ob Studierende bzw. Berufseinsteiger aktuell noch eigene SQL-
Kenntnisse bendtigen, soll untersucht werden, ob Kis bereits in der Lage sind, SQL-Abfragen
vollig fehlerfrei zu generieren. Nur wenn dies der Fall ist, kann man sich ,quasi blind“ (d.h. ohne
eigene Kompetenzen zum Thema SQL) auf ein generiertes Ergebnis verlassen. Dement-
sprechend ist irrelevant, ob eine generierte Abfrage fur eine bestimmte Problemstellung in 99%
der Falle korrekt ist, oder nur in 80% - die Studierenden muissen in beiden Fallen in der Lage
sein, eine generierte Abfrage zu Uberprifen und ggf. selbst eine korrekte Abfrage zu erstellen.
Sie bendtigen also tiefgehende SQL-Kenntnisse, d.h. dieses Thema muss weiterhin in
Datenbank-Vorlesungen gelehrt werden.

Da eine solche quantitative Bewertung der Qualitat von generierten SQL-Abfragen also nicht
hilfreich ist, wurde auf einen grofien ,Stichprobenumfang® verzichtet: Das bedeutet, fiir eine
Aufgabenstellung wurden nicht sehr viele Losungen automatisch von der Kl generiert und
diese ebenfalls automatisch auf Korrektheit geprift, um so einen Prozentsatz fiir die Korrekt-
heit zu ermitteln. Stattdessen wurden die Lésungen (ahnlich wie bei der Korrektur einer

13

LD

Hochschule Neu-Ulm
University of Applied Sciences

Klausur) vom Autor einzeln manuell gepriift. Diese Vorgehensweise wird als ,manual matching’
bezeichnet. In (Kim et al., 2020) wird festgestellt, dass dies viel Aufwand erfordert, aber
Falschbewertungen vermeidet, die bei den anderen (automatisch durchfihrbaren) Bewertungs-
methoden auftreten kénnen. Ein Nachteil ist, dass keine quantitativen Aussagen moglich sind,
welche aber (wie bereits diskutiert) in unserem Kontext auch nicht erforderlich sind.

Damit eine Kl sinnvolle SQL-Abfragen generieren kann, massen ihr die Namen der
zugrundeliegenden Tabellen und deren Spalten bekannt sein. Diese kénnten prinzipiell mittels
eines ,Prosa-Textes* oder einer speziellen Syntax beschrieben werden. Hier wurde jedoch der
Ansatz gewahlt, die CREATE-TABLE-Statements als SQL-Befehle zu verwenden. Grinde
hierfir sind, dass diese den Studierenden in Projektarbeiten tblicherweise ohnehin vorliegen,
so dass es naheliegend ist, dass auch sie diese im Prompt verwenden. Auflerdem wird diese
Vorgehensweise vermutlich auch haufig in den Lerndaten der LLMs vorkommen, weil auch hier
diese SQL-Befehle ohnehin vorhanden sein werden. Ganz konkret wurde deshalb aus den
bereits erwahnten EER-Diagrammen durch MySQL-Workbench automatisch ein entsprechen-
des Skript generiert. Aullerdem wurde davor und danach ein erklarender kurzer Text eingeflgt,
um die Aufgabenstellung im Prompt zu verdeutlichen. SchlieRlich endet der Prompt mit der
konkreten Aufgabenstellung. Damit ergibt sich folgender Gesamtaufbau (wobei die CREATE-
TABLE-Statements fiir die weiteren Tabellen weggelassen wurden, um die Lesbarkeit zu
erhéhen):

Eine relationale Datenbank besteht aus folgenden als DDL beschriebenen Tabellen.

-- Schema KundenDB

CREATE SCHEMA IF NOT EXISTS ‘KundenDB' DEFAULT CHARACTER SET utf8 ;
USE "KundenDB" ;

-- Table "KundenDB".’"Kunde’

CREATE TABLE IF NOT EXISTS "KundenDB'."Kunde" (
‘KundenNr' VARCHAR(18) NOT NULL,
‘Name" VARCHAR(60) NULL,
‘Umsatz" DECIMAL(12,2) NULL,
PRIMARY KEY (‘KundenNr’))
ENGINE = InnoDB;

-- Table "KundenDB'."Bestellung’

CREATE TABLE ...
Erstelle eine SQL-Anfrage fiir folgende Problemstellung.

Ubersicht iiber die Bestellungen mit zugehérigen Detaildaten.

Auszugebende Ergebnisspalten: BestellNr, Kundenname, Anzahl Bestellpositionen, Preis des teuersten Artikels

14

LD

Hochschule Neu-Ulm
University of Applied Sciences

Der Anhang A enthalt eine Liste aller Aufgabenstellungen. Wie im obigen Beispiel sind hierbei
auch jeweils die auszugebenden Ergebnisspalten angegeben, weil sich diese nicht aus der
inhaltlichen Beschreibung der Aufgabenstellung ergeben (d.h. die SELECT-Klausel ist
ansonsten nicht eindeutig definiert). Die Aufgabenstellungen 1 bis 21 verwenden die in Abb. 1
dargestellte Kunden-Datenbank, ab der Nummer 22 wird die Firmen-Datenbank (vgl. Abb. 2)
verwendet. Wurde nicht sofort eine korrekte Lésung generiert, so wurde die entsprechende
Abfrage wiederholt ausgefiihrt.

Abb. 3 enthalt eine Kurzbeschreibung der zu erwartenden Lésungen, die vollstandigen
Lésungen sind als SQL-Statement in Anhang B dargestellt. Selbstverstandlich existieren auch
andere korrekte Losungen, wie z.B. die Verwendung einer Sub-Query anstatt einem INNER
bzw. OUTER JOIN (fur Abfrage 13 sind im Anhang B exemplarisch drei unterschiedliche
Lésungen angegeben). Auerdem stellt Abb. 3 einen Uberblick tber die Abfrageergebnisse
dar. Die Beschriftungen ,korrekt“ (dunkelgriin) bedeuten hierbei, dass das entsprechende LLM
sofort eine korrekte Lésung generiert hat. Diese Falle sind fir die weitere Analyse eher
uninteressant, so dass nicht weiter aus sie eingegangen wird. Alle anderen (d.h. zumindest
teilweise falschen) Lésungen werden im nachsten Unterabschnitt detailliert diskutiert.

Im Falle von ,noch korrekt* wurde die Lésung zwar als korrekt gewertet, aber mit Ein-
schrankungen. Dies betrifft z.B. Losungen, in denen eine bestimmte Tabelle unndétigerweise

Nr Kurzbeschreibung der Lésung 1. Copilot 2. ChatGPT 3. DeepSeek
nur 1 Tabelle benétigt, WHERE mit Ahnlichkeitsuche (d.h. LIKE)
2 Tabellen (d.h. 1 INNER JOIN) und ORDER BY

dasselbe mit OUTER JOIN

dasselbe, aber nur Zeilen ohne Join-Partner (d.h. WHERE mit IS NULL)
1 JOIN, GROUP BY und Aggregationsfunktion COUNT

3 Tabellen (d.h. 2 x JOIN), Aggregation ohne GROUP BY

UNION mit je 1 JOIN in beiden Teilanfragen

3 Tabellen, WHERE mit LIKE, GROUP BY, mehrere Aggregationen
4 Tabellen (d.h. 3x JOIN), jeweils OUTER JOIN

10 3 Tabelle, GROUP BY, 2 Aggregationen

11 SubQuery mit derselben Tabelle wie in Hauptquery noch korrekt noch korrekt noch korrekt
12 3 Tabellen, GROUP BY, HAVING-Klausel, keine Aggregationim SELECT
13 2x OUTER JOIN und IS NULL oder SubQuery oder HAVING

14 3 Tabellen, GROUP BY, HAVING mit Multiplikation

15 UNION mit 1x bzw. 2x JOIN und WHERE in den Teilanfragen

16 SubQuery mit 1 JOIN und WHERE

17 6 Tabellen (d.h. 5x JOIN), WHERE

18 SubQuery mit 1 JOIN und WHERE

19 SubQuery mit 2x JOIN und WHERE

20 SubQuery mit 2x JOIN und WHERE, zusétzl. 1x JOIN in Haupt-Query noch korrekt
21 SubQuery mit 2x JOIN und WHERE, zusétzl. 2x JOIN in Haupt-Query
22 JOIN (mit richtiger Beziehung) und WHERE

23 JOIN (mit der anderen Beziehung) und WHERE

CoOoO~NOGAORWON-=-

24 rekursive Bez genutzt (2x JOIN) & Bez leitet (1 JOIN), WHERE manchmal noch korrekt
25 rekursive Bez genutzt (2x JOIN) & Bez arbeitetin (1 JOIN), WHERE noch korrekt teilweise

26 zusatzlich JOIN mit Tabelle Standort

27 rekursive Bez und Bez arbeitetIn & leitet genutzt (2x JOIN), WHERE]

28 rekursive Bez und Bez arbeitetin 2 mal genutzt (2x JOIN), WHERE noch korrekt
29 rekusive Query (Common Table Expression: CTE) fur Tab. Mitarbeiter
30 zusétzlich JOIN mit Tabelle Abteilung
31 zusatzlich JOIN mit Tabelle Standort
32 rekursive Bez genutzt (2x JOIN) & Bez. leitet & Vorgesetzter, WHERE eilweise manchmal
33 rekursive Bez genutzt (2x JOIN) & 2x Bez leitet, WHERE manchmal

Abb. 3: Uberblick liber die Korrektheit der generierten Lésungen fiir unterschiedliche LLMs

15

LD

Hochschule Neu-Ulm
University of Applied Sciences

verwendet wurde oder weil (ohne dass dies so vorgegeben ist) angenommen wurde, dass
Eintrage in der Tabelle IstBefreundetMit (vgl. Abb. 2b) ,inhaltlich doppelt* vorkommen (d.h.
etwa eine Zeile mit PersonalNr1 = 27 und PersonalNr1 = 88 sowie zusatzlich eine weitere Zeile
mit PersonalNr1 = 88 und PersonalNr1 = 27 — dies kann in einer Datenbank kann so realisiert
sein, dies muss aber nicht der Fall sein).

Als ,teilweise” korrekt wurden z.B. LOsungen gewertet, bei denen sich aulRer den korrekten
Ergebniszeilen auch falsche ergeben. So sind in Abfrage 26 die Standorte gefragt, an denen
Freunde von Peter Miller arbeiten. ChatGPT hat jedoch eine Lésung generiert, bei der aul3er
diesen auch der Standort von Peter Muller selbst im Ergebnis enthalten ist.

Bei Eintragen, die mit ,manchmal® beschriftet sind, hat das LLM zuerst eine falsche Losung
generiert. Eine wiederholte Ausflihrung ergab dann allerdings ein korrektes SQL-Statement.
Hierbei wurde die Aufgabenstellung teilweise jedoch umformuliert, um die Verstandlichkeit zu
verbessern.

Bei ,falsch® markierten Eintragen wurden auch im Wiederholungsfall falsche Losungen
generiert.

Aufféllige Einzelergebnisse

Im Folgenden wird auf alle nicht ,perfekt gelésten® Falle eingegangen, d.h. auf diejenigen, die
in Abb. 3 nicht mit korrekt markiert sind. AuBerdem werden einige sonstige Auffalligkeiten der
von den LLMs generierten Ergebnisse dargestellt.

Unzulangliche Lésungen

Die nicht fehlerfreien Losungen sind im Folgenden geordnet nach LLM dargestellt (und nicht
nach Aufgabenstellung), da manche Aufgabenstellung nur von einem einzigen LLM falsch
geldst wurden und sich zudem die Art der Fehler selbst bei derselben Aufgabenstellung bei
verschiedenen LLMs stark unterscheidet.

1. Microsoft Copilot (auf Basis ChatGPT in der Version GPT4)

Dieses Produkt hat die meisten vollig falschen SQL-Abfragen generiert. Im Folgenden wird
zusatzlich auf die teilweise oder geringfugig falschen Ergebnisse eingegangen. Um die
Ubersichtlichkeit zu erhdhen ist dabei stets die jeweilige Aufgaben-Nummer (vgl. Abb. 3 sowie
Anhang A und B) sowie die Aufgabenstellung (in verkirzter Form) angegeben. Einige
Experimente sind dabei ausfiuhrlicher und in verschiedenen Varianten dargestellt, um das
Verhalten des LLM bei einem unterschiedlich detaillierten Prompt zu erlautern.

11. Der Kunde (oder die Kunden) mit dem gré8ten Umsatz

Die urspriingliche Aufgabenstellung lautete hier ,Der Kunde mit dem gréRten Umsatz®. Hierflr
wurde die unten dargestellte Losung generiert. Diese funktioniert zwar, aber nur wenn es exakt
einen einzigen Kunden mit diesem Maximalumsatz gibt. Das ,LIMIT 1* fihrt namlich dazu, dass
nur eine Zeile ausgegeben wird. Durch die Sortierung ist das dann tatsachlich der Kunde mit
dem grofdten Umsatz — oder eben einer dieser Kunden, falls es mehrere solche gibt.

16

LD

Hochschule Neu-Ulm
University of Applied Sciences

SELECT k.KundenNr, k.Name, k.Umsatz

FROM Kunde k

ORDER BY k.Umsatz DESC

LIMIT 1

Weil die LIMIT-Klausel nicht von allen Produkten unterstitzt wird, wurde Copilot im Prompt
zudem aufgefordert, eine Losung zu generieren, die auch in Microsoft Access funktioniert.
Daraufhin entstand die unten dargestellte Losung (mit TOP 1 anstatt LIMIT 1), welche auch nur
einen einzigen Kunden ausgibt.

SELECT TOP 1 Kunde.KundenNr, Kunde.Name, Kunde.Umsatz

FROM Kunde

ORDER BY Kunde.Umsatz DESC

Nach einer Klarstellung der Aufgabenstellung (,Der Kunde (oder die Kunden) mit ...“, s.0.)
wurde eine korrekte Losung generiert. Allerdings ist es fir einen Benutzer des LLMs evitl. nicht
einfach, zu erkennen, dass die Aufgabenstellung nicht ideal formuliert war und deshalb eine
moglicherweise falsche Losung entstanden ist.

16. Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 (kg) bestellt wurde.
Hierfur wurde folgende Losung generiert (die Einrickungen wurden nachtraglich eingefligt, um
die einzelnen SQL-Klauseln besser erkennbar zu machen). Die Aufgabenstellung wurde 5 mal
ausgefuhrt, wobei jedes Mal folgendes falsche Ergebnis generiert wurde:
SELECT b.BestellNr, b.Datum, b.KundenNr
FROM Bestellung b LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikeINr AND a.Gewicht = 1715
WHERE a.ArtikeINr IS NULL
Um diese Aufgabenstellung zu I6sen, sollte eigentlich eine Sub-Query verwendet werden (vgl.
Anhang B). Dies ist hier nicht der Fall. Die Losung ist aus folgendem Grund falsch:
Angenommen eine Bestellung hat 2 Bestellpositionen (d.h. 2 Zeilen in der Tabelle BestellPos)
hat, mit den Artikeln A2 (mit 1715 kg) und A3 (mit einem anderen Gewicht). Wegen dem Artikel
A2 mit 1715 kg sollte diese Bestellung nicht im Ergebnis sein. Allerdings findet die Bestell-
position mit dem Artikel A3 keinen Join-Partner in der Tabelle Artikel, weil die Join-Bedingung
,2a.Gewicht = 1715 nicht erfillt ist. Wegen dem OUTER JOIN werden die Felder aus der
Tabelle Artikel mit NULL-Werten aufgefullt, so dass die WHERE-Klausel erfillt ist und diese
Bestellung falschlicherweise ausgegeben wird.
a. Variante: Bestellungen, in denen kein Artikel mit einem Gewicht (ber 1715 (kg) bestellt
wurde
Wird die Aufgabenstellung so modifiziert, dass (anstatt Artikel mit 1715 kg) solche mit einem
grolkeren Gewicht nicht bestellt werden dirfen, dann wird eine korrekte Lésung generiert. Dies
ist erstaunlich, weil sich der SQL-Befehl nur durch ein > anstatt einem = unterscheidet.
b. Zusétzliche Erkldarung: Bestellungen, in denen kein Artikel mit einem Gewicht von 1715
(kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch ein Artikel
mit einem anderen Gewicht als 1715 bestellt wurde.
Diese Erklarung beschreibt den Fehlerfall der urspriinglichen Lésung. Trotzdem generiert
dieses LLM dieselbe falsche SQL-Abfrage.
c. Zusétzliche Erkldrung und Beispiel: Bestellungen, in denen kein Artikel mit einem Gewicht
von 1715 (kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch

17

LD

Hochschule Neu-Ulm
University of Applied Sciences

ein Artikel mit einem anderen Gewicht als 1715 bestellt wurde. Beispielsweise gehért eine
Bestellung fiir einen Artikel mit 1715 kg und einem Artikel mit 2000 kg nicht in das Ergebnis.
Hier wurde eine korrekte Lésung generiert. Jedoch erfordert sowohl die Erklarung als auch das
Beispiel grole Kompetenzen bzgl. Erkennung des Fehlers und eines konkreten Problemfalls.
Es sind also sehr gute SQL-Kenntnisse erforderlich (vermutlich ist es einfacher, die SQL-
Anweisung selbst zu erstellen).
d. Weiteres erkldrendes Beispiel: Bestellungen, in denen kein Artikel mit einem Gewicht von
1715 (kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch ein
Artikel mit einem anderen Gewicht als 1715 bestellt wurde. Beispielsweise gehort eine
Bestellung fiir einen Artikel mit 1715 kg und einem Artikel mit 2000 kg nicht in das Ergebnis.
Eine Bestellung ganz ohne Bestellpositionen (und damit Artikel) gehért hingegen schon in das
Ergebnis.
Daraufhin wurde eine korrekte Losung generiert, die aber seltsamerweise ein GROUP BY und
HAVING verwendet, sowie ein nicht von allen Datenbank-Management-Systemen unterstitztes
CASE:
SELECT b.BestellNr, b.Datum, b.KundenNr
FROM Bestellung b LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr
GROUP BY b.BestellNr, b.Datum, b.KundenNr
HAVING SUM(CASE WHEN a.Gewicht = 1715 THEN 1 ELSE 0 END) =0

18. Kunden, die die Zahlungsart Kreditkarte nie verwendet haben.
Dies fuhrte zu einer falschen Lésung, weil die Bezeichnung Kreditkarte als ZahlArtNr
interpretiert wurde. Um die Aufgabenstellung eindeutiger zu machen, wurde sie wie folgt
abgewandelt:
Kunden, die die Zahlungsart mit der Bezeichnung Kreditkarte nie verwendet haben.
Eine korrekte Losung sollte wieder eine Sub-Query verwenden. Die generierte Lésung war
falsch und hat wieder denselben Aufbau wie bei Aufgabenstellung 16:
SELECT k.KundenNr, k.Name
FROM Kunde k LEFT JOIN Verwendet v

ON k.KundenNr = v.KundenNr AND v.ZahlArtNr = 'Kreditkarte'
WHERE v.KundenNr IS NULL
Es wurde wieder untersucht, inwieweit zusatzliche Erklarungen und Beispiele hilfreich sind: Es
genugte bereits eine Erklarung (analog 16b), um eine korrekte Losung zu erhalten. Dasselbe
gilt fur Erkldrung und Beispiel (analog 16¢). Wenn zuséatzlich ein dem Fall 16d entsprechender
Erklarungstext angegeben wird (... Ein Kunde ganz ohne Zahlungsarten hingegen schon),
dann entsteht wieder die oben dargestellte falsche Lésung. Diese Vorgehensweise beim
Erstellen eines Prompt ist also nicht zuverlassig.
19. Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.
Die Aufgabenstellung ist ahnlich zu Nr. 16, wobei jedoch ein zusatzlicher Join mit der Tabelle
Bestellung in der Sub-Query erforderlich ist. Aullerdem muss die Tabelle Kunde verwendet
werden, weil diese die auszugebenden Spalten enthalt. Diese Tabelle ist in der generierten
Lésung zwar vorhanden, aber ansonsten wurde derselbe Fehler wie bei Nr. 16 gemacht:

18

LD

Hochschule Neu-Ulm
University of Applied Sciences

SELECT k.KundenNr, k.Name, k.Umsatz
FROM Kunde k LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikeINr AND a.Gewicht = 1715
WHERE a.ArtikeINr IS NULL

20. Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)
bestellt haben.
Auch dies folgt demselben Muster, wobei zusétzlich ein Join in der Haupt-Query notig ist (mit
der Tabelle Adresse). Die generierte Losung enthalt wieder denselben Fehler:
SELECT DISTINCT a.Strasse, a.HausNr, a.PLZ, a.0rt
FROM KundenDB.Adresse a JOIN KundenDB.Kunde k ON a.KundenNr = k.KundenNr

LEFT JOIN KundenDB.Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN KundenDB.BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN KundenDB.Artikel ar ON bp.ArtikeINr = ar.ArtikeINr AND ar.Gewicht = 1715
WHERE ar.ArtikeINr IS NULL
Auch die Aufgabenstellung 21 ist hierzu sehr ahnlich, wobei sogar 2 Join-Operationen in der
Haupt-Query ndétig sind. Erstaunlicherweise wurde hierfur jedoch eine korrekte Losung
generiert.

25. Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Mliller arbeiten
Hier wurde die nachfolgend angegebene Losung generiert. Diese ist nur dann korrekt, wenn
alle Freundschaftsbeziehungen ,doppelt” in der Tabelle IstBefreundetMit gespeichert sind. Das
bedeutet, dass aul’er einer Zeile mit PersonalNr1 = X und PersonalNr2 =Y zusatzlich eine
Zeile mit PersonalNr1 =Y und PersonalNr2 = X vorhanden sein muss. Es ist zwar moglich,
diese Tabelle so zu beflllen, das muss aber nicht der Fall sein und war bei dem im Prompt
abgegebenen Schema auch nicht so vorgegeben. Deswegen wird diese Lésung lediglich als
,hoch korrekt gewertet.
SELECT DISTINCT A.AbteilungsNr, A.Bezeichnung
FROM Abteilung A JOIN Mitarbeiter M ON A.AbteilungsNr = M.ArbeitetinAbteilungsNr

JOIN IstBefreundetMit B ON M.PersonalNr = B.PersonalNr2

JOIN Mitarbeiter P ON B.PersonalNr1 = P.PersonalNr
WHERE P.Vorname = 'Peter' AND P.Nachname = 'Mller'

27. Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Miiller

Die hierflir generierte (nachfolgend dargestellte) Lésung funktioniert nicht. Korrekt realisiert ist,
dass m (Peter Mdller) mit m1 befreundet ist. Die (letzten beiden) Join-Bedingungen
m1.PersonalNr = a.AbteilungsleiterPersonalNr und a.AbteilungsleiterPersonalNr =
m2.PersonalNr sorgen zusammen aber daflr, dass m1 und m2 identisch sind. Korrekt ware,
die Abteilung zu ermitteln, in der m2 arbeitet (nicht: leitet). Deshalb musste die erste dieser
Bedingungen m1.ArbeitetinAbteilungsNr = a.AbteilungsNr lauten (vgl. Anhang B).

19

LD

Hochschule Neu-Ulm
University of Applied Sciences

SELECT DISTINCT a.AbteilungsleiterPersonalNr AS PersonalNr, m2.Vorname, m2.Nachname
FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit f
ON m.PersonalNr = f.PersonalNr1 OR m.PersonalNr = f.PersonalNr2
JOIN AbteilungsDB.Mitarbeiter m1
ON (m1.PersonalNr = f.PersonalNr1 OR m1.PersonalNr = f.PersonalNr2)
AND m1.PersonalNr = m.PersonalNr
JOIN AbteilungsDB.Abteilung a ON m1.PersonalNr = a.AbteilungsleiterPersonalNr
JOIN AbteilungsDB.Mitarbeiter m2 ON a.AbteilungsleiterPersonalNr = m2.PersonalNr
WHERE m.Vorname = 'Peter' AND m.Nachname = 'Miller'

28. Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Miiller
Die generierte Losung ist nicht falsch. Sie ist allerdings sehr seltsam, weil nach dem Join mit
der Tabelle Mitarbeiter p keine Join-Bedingung folgt, die eine Verknlipfung mit einer anderen
Tabelle realisiert. Zudem wird die im Join davor angegebene Tabelle Abteilung a ansonsten
uberhaupt nicht verwendet, so dass dieser Join unnétig ist und ersatzlos gestrichen werden
kann.
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM Mitarbeiter m JOIN Abteilung a ON m.ArbeitetinAbteilungsNr = a.AbteilungsNr
JOIN Mitarbeiter p ON p.Nachname = 'Miller' AND p.Vorname = 'Peter’
JOIN IstBefreundetMit f ON (f.PersonalNr1 = p.PersonalNr
OR f.PersonalNr2 = p.PersonalNr)
JOIN Mitarbeiter mf ON (mf.PersonalNr = f.PersonalNr1
OR mf.PersonalNr = f.PersonalNr2) AND mf.PersonalNr != p.PersonalNr
WHERE m.ArbeitetinAbteilungsNr = mf.ArbeitetinAbteilungsNr

30. Die Abteilungen, in denen Vorgesetzte von Peter Miller arbeiten, auch indirekt Vorgesetzte
Hier wurde die unten dargestellte, inhaltlich falsche Abfrage generiert. Der rekursive Teil
ermittelt (korrekt) die Personalnummern von Mitarbeitern und ihren Vorgesetzten. Der Teil
danach ist jedoch falsch, weil wegen der Join-Bedingung a.AbteilungsleiterPersonalNr =
v.PersonalNr Abteilungen ausgegeben, die von einem (indirekten) Vorgesetzten von Peter
Mauller geleitet werden. Es sind aber Abteilungen gesucht, in denen diese Personen arbeiten.
Hierzu misste also das Attribut a.ArbeitetinAbteilungsNr verwendet werden. Damit dieses
verwendbar wird, ware ein weiterer Join (mit der Tabelle Mitarbeiter) notwendig, d.h. dieser
fehlt in der vorgeschlagenen Ldsung.

Zudem ist in v.PersonalNr auch Peter Miiller selbst enthalten Es selbst ist in der Ausgabe aber
nicht zu bertcksichtigen, sondern nur seine Vorgesetzten. Deshalb darf diese Spalte in der
letzten Join-Bedingung nicht verwendet werden, sondern es muss mit VorgesetzterPersonalNr
verglichen werden (fur den Join mit der 0.g. Tabelle Mitarbeiter).

Dieser Fehler ist (insb. fiir eher unerfahrene Studierende) vermutlich schwer zu finden, weil die
Abfrage syntaktisch korrekt ist und auf den ersten Blick plausibel klingt. Es ist aber etwas
anderes, dass eine Person (auch wenn sie Vorgesetzter ist) in einer Abteilung arbeitet, als
wenn diese Person sie leitet.

20

LD

Hochschule Neu-Ulm
University of Applied Sciences

WITH RECURSIVE Vorgesetzte AS (
SELECT m.PersonalNr, m.VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter m
WHERE m.Nachname = 'Muller' AND m.Vorname = 'Peter’
UNION
SELECT m.PersonalNr, m.VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter m INNER JOIN Vorgesetzte v
ON m.PersonalNr = v.VorgesetzterPersonalNr
)
SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung
FROM AbteilungsDB.Abteilung a JOIN Vorgesetzte v
ON a.AbteilungsleiterPersonalNr = v.PersonalNr

31. Die Abteilungen und die Standorte an denen Vorgesetzte von Peter Miiller arbeiten, auch
indirekt Vorgesetzte
Hier wurde derselbe Fehler gemacht, wie bei der vorherigen Aufgabenstellung, d.h. die letzte
Join-Bedingung enthalt wieder beide bereits beschriebenen Fehler.
WITH RECURSIVE Vorgesetzte AS (

SELECT m.PersonalNr, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Mller'

UNION ALL

SELECT m.PersonalNr, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m

INNER JOIN Vorgesetzte v ON m.PersonalNr = v.VorgesetzterPersonalNr
)
SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname
FROM AbteilungsDB.Abteilung a INNER JOIN AbteilungsDB.Standort s

ON a.StandortNr = s.StandortNr
INNER JOIN Vorgesetzte v ON a.AbteilungsleiterPersonalNr = v.PersonalNr

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Miiller befreundet sind
Die generierte Losung enthalt einen eher kleinen Fehler: Der Mitarbeiter m ist mit pm
befreundet (dem Vorgesetzten von Peter Miiller). Jedoch kann auch m = pm sein (z.B. falls bei
beiden OR-Bedingungen die PersonalNr1 verwendet wird). Also werden nicht nur Freunde des
Vorgesetzten, sondern auch dieser Vorgesetzte selbst ausgegeben. In der SQL-Abfrage fehlt
die im Anhang B mit AND verknupfte Bedingung, die dafiir sorgt, dass die PersonalNr von m
und pm unterschiedlich sind.
SELECT DISTINCT a.AbteilungsleiterPersonalNr AS PersonalNr, m.Vorname, m.Nachname
FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m
ON a.AbteilungsleiterPersonalNr = m.PersonalNr
JOIN AbteilungsDB.IstBefreundetMit ib ON m.PersonalNr = ib.PersonalNr1
OR m.PersonalNr = ib.PersonalNr2
JOIN AbteilungsDB.Mitarbeiter pm ON (ib.PersonalNr1 = pm.PersonalNr
OR ib.PersonalNr2 = pm.PersonalNr)

21

LD

Hochschule Neu-Ulm
University of Applied Sciences

WHERE pm.PersonalNr IN (
SELECT VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter
WHERE Vorname = 'Peter' AND Nachname = 'Mller")

33. Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Miiller befreundet sind
Hier ist die generierte Losung falsch: Wegen 1. Join-Bedingung ist a1 die Abteilung, die Peter
Madller (m1) leitet. Dass er Abteilungsleiter ist, wird in der Aufgabenstellung jedoch gar nicht
gefordert, sondern es geht um die Abteilung, in der er arbeitet. Deshalb misste (anstatt der
PersonalNr) die AbteilungsNr in der Join-Bedingung verwendet werden, also die Bedingung
m1.ArbeitetinAbteilungsNr = a1.AbteilungsNr.
SELECT DISTINCT m2.PersonalNr, m2.Vorname, m2.Nachname
FROM AbteilungsDB.Mitarbeiter m1 JOIN AbteilungsDB.Abteilung a1
ON m1.PersonalNr = a1.AbteilungsleiterPersonalNr
JOIN AbteilungsDB.IstBefreundetMit b
ON a1.AbteilungsleiterPersonalNr = b.PersonalNr1
OR a1.AbteilungsleiterPersonalNr = b.PersonalNr2
JOIN AbteilungsDB.Abteilung a2
ON (b.PersonalNr1 = a2.AbteilungsleiterPersonalNr
OR b.PersonalNr2 = a2.AbteilungsleiterPersonalNr)
AND a2.AbteilungsleiterPersonalNr != a1.AbteilungsleiterPersonalNr
JOIN AbteilungsDB.Mitarbeiter m2 ON a2.AbteilungsleiterPersonalNr = m2.PersonalNr
WHERE m1.Vorname = 'Peter' AND m1.Nachname = 'Mdiller'

2. ChatGPT (GPT-4-turbo)

Im Folgenden sind die nicht vollstandig korrekt generierten SQL-Abfragen von ChatGPT
dargestellt. Dabei ist zu beachten, dass mit GPT-4-turbo eine andere Version des LLMs
zugrunde liegt als bei den zuvor dargestellten Lésungen von Microsoft Copilot.

4. Alle Bestellungen sortiert nach BestellNr, aber nur Bestellungen, fiir die (noch) keine
Rechnung existiert

Hier wurde die die Sortierung vergessen:

SELECT b.BestellNr, b.Datum AS 'Bestell-Datum'

FROM Bestellung b LEFT JOIN Rechnung r ON b.BestellNr = r.BestellNr

WHERE r.RechnNr IS NULL

Bei der Wiederholung des Tests wurde jedoch eine korrekte Losung generiert, d.h. die
ORDER-BY-Klausel ist vorhanden.

11. Der Kunde (oder die Kunden) mit dem gré8ten Umsatz

Ebenso wie Microsoft Copilot wurde mit der urspringlichen Aufgabenstellung (,Der Kunde mit
...“) eine Lésung generiert, die nur funktioniert, wenn es nur einen einzigen solchen Kunden
gibt. Grund ist wieder das ,LIMIT 1%, aufgrund dessen nur eine Zeile ausgegeben wird.
SELECT k.KundenNr, k.Name, k.Umsatz

FROM Kunde k

ORDER BY k.Umsatz DESC

LIMIT 1

Die Klarstellung der Aufgabenstellung flihrte auch hier zu einer korrekten Lésung.

22

LD

Hochschule Neu-Ulm
University of Applied Sciences

21. Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)
bestellt haben
Die nachfolgend dargestellte generierte Losung enthalt in der Sub-Query einen unnétigen Join
mit der Tabelle Kunde, weil das zurtickgegebene Attribut KundenNr ist auch in der Tabelle
Bestellung enthalten ist.
In der Haupt-Query werden Joins mit den Tabellen Bestellung, BestellPos und Artikel
durchgefiihrt. Dies flihrt zu einem unvollstandigen (d.h. falschen) Ergebnis, weil dann Kunden
(und damit deren Zahlungsarten) nicht berticksichtigt werden, denen gar keine Bestellung,
BestellPos oder Artikel zugeordnet sind. Die Zahlungsarten solcher Kunden gehoéren jedoch in
das Ergebnis, weil z.B. Kunden ohne eine Bestellung sicher keinen Artikel mit 1715 kg Gewicht
bestellt haben.
SELECT DISTINCT Z.ZahlArtNr, Z.Bezeichnung
FROM KundenDB.Zahlungsart Z JOIN KundenDB.Verwendet V ON Z.ZahlArtNr = V.ZahlArtNr

JOIN KundenDB.Kunde K ON V.KundenNr = K.KundenNr

JOIN KundenDB.Bestellung B ON K.KundenNr = B.KundenNr

JOIN KundenDB.BestellPos BP ON B.BestellNr = BP.BestellNr

JOIN KundenDB.Artikel A ON BP.ArtikeINr = A ArtikelNr
WHERE K.KundenNr NOT IN (

SELECT DISTINCT K2.KundenNr

FROM KundenDB.Kunde K2 JOIN KundenDB.Bestellung B2

ON K2.KundenNr = B2.KundenNr
JOIN KundenDB.BestellPos BP2 ON B2.BestellNr = BP2.BestellNr
JOIN KundenDB.Artikel A2 ON BP2.ArtikelNr = A2.ArtikelNr

WHERE A2.Gewicht = 1715)
a. Zusatzliche Erklarung: Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem
Gewicht von 1715 (kg) bestellt haben. Achtung: Zahlungsarten von Kunden, die gar keine
Bestellung oder eine Bestellung ohne Bestellpositionen haben, gehéren in das Ergebnis, weil
diese Kunden dann ja keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.
Ebenso wie beim Copilot wurde getestet, ob der eben beschriebene Fehler durch obigen
Erklarungstext vermieden werden kann. Dies flhrte jedoch zu der nachfolgend dargestellten
falschen SQL-Abfrage. Diese bertcksichtigt auch Kunden, die irgendeinen Artikel mit einem
anderen Gewicht als 1715 bestellt haben, auch wenn sie zusatzlich einen Artikel mit 1715 kg
bestellt haben — also eigentlich explizit aus dem Ergebnis ausgeschlossen werden sollen.
SELECT DISTINCT z.ZahlArtNr, z.Bezeichnung
FROM Zahlungsart z JOIN Verwendet v ON z.ZahlArtNr = v.ZahlArtNr

LEFT JOIN Kunde k ON v.KundenNr = k.KundenNr

LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr
WHERE (a.Gewicht IS NULL OR a.Gewicht <> 1715)
b. Zusiétzliche Erkldrung und Beispiel: Die Zahlungsarten derjenigen Kunden, die keinen
Artikel mit einem Gewicht von 1715 (kg) bestellt haben. Achtung: Zahlungsarten von Kunden,
die gar keine Bestellung oder eine Bestellung ohne Bestellpositionen haben, gehdren in das
Ergebnis, weil diese Kunden dann ja keinen Artikel mit einem Gewicht von 1715 (kg) bestellt

23

LD

Hochschule Neu-Ulm
University of Applied Sciences

haben. Kunden, die Artikel mit einem anderen Gewicht und zusétzlich Artikel mit 1715 (kg)
bestellt haben, diirfen nicht beriicksichtigt werden.
Damit wurde ein korrektes Ergebnis generiert. Jedoch muss wieder festgestellt werden, das die
Fehlererkennung und geeignete Formulierung von Erklarungen und Beispielen schwierig ist
und unerfahrene Anwender vermutlich GUberfordert.
SELECT DISTINCT z.ZahlArtNr, z.Bezeichnung
FROM Zahlungsart z JOIN Verwendet v ON z.ZahlArtNr = v.ZahlArtNr

JOIN Kunde k ON v.KundenNr = k.KundenNr
WHERE k.KundenNr NOT IN (

SELECT DISTINCT b.KundenNr

FROM Bestellung b JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr
WHERE a.Gewicht = 1715)

24. Alle Abteilungen, die Freunde des Mitarbeiters Peter Miller leiten
Die generierte Losung ist wegen der letzten Join-Bedingung A.AbteilungsleiterPersonalNr =
M.PersonalNr falsch: Aufgrund der WHERE-KIausel ist M = Peter Mdller. Durch die erwahnte
Join-Bedingung ist er Abteilungsleiter der Abteilung a. Es wird also die von ihm geleitete
Abteilung ausgegeben — Aufgabenstellung war jedoch, Abteilungen zu ermitteln, die seine
Freunde leiten. Fur eine korrekte Losung hatte in der letzten Join-Bedingung (anstatt M.)
IFM.PersonalNr1/2 verwendet werden mussen.
SELECT A.AbteilungsNr, A.Bezeichnung
FROM AbteilungsDB.Mitarbeiter M JOIN AbteilungsDB.IstBefreundetMit IFM
ON M.PersonalNr = IFM.PersonalNr1 OR M.PersonalNr = IFM.PersonalNr2

JOIN AbteilungsDB.Abteilung A ON A.AbteilungsleiterPersonalNr = M.PersonalNr
WHERE (M.Vorname = 'Peter' AND M.Nachname = 'Muller")
Die Wiederholung des Tests flhrte zu einer fast richtigen Lésung. Diese unten dargestellte
SQL-Abfrage fihrt 2 Joins mit der Tabelle Mitarbeiter durch (als m und p). Dies ist nicht falsch,
aber unnétig (vgl. Anhang B).
In den Join-Bedingungen fehlt jedoch eine Bedingung, die verhindert, dass Peter Muller (p) als
sein eigener Freund (m, der Abteilungsleiter) betrachtet wird (z.B., weil in beiden mit OR
verknupften Join-Bedingungen ibm.PersonalNr1 verwendet wird). Die Ldsung ist also nur
teilweise korrekt.
SELECT a.AbteilungsNr, a.Bezeichnung
FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON a.AbteilungsleiterPersonalNr = m.PersonalNr
JOIN AbteilungsDB.IstBefreundetMit ibm ON (m.PersonalNr = ibm.PersonalNr1
OR m.PersonalNr = ibm.PersonalNr2)
JOIN AbteilungsDB.Mitarbeiter p ON (ibm.PersonalNr1 = p.PersonalNr
OR ibm.PersonalNr2 = p.PersonalNr)

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Muller'

25. Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Mliller arbeiten
Hier wurde derselbe Fehler gemacht, wie bei der vorherigen Aufgabe. d.h. Peter Miller erftllt
selbst die Join-Bedingungen: Da eine entsprechende Bedingung fehlt (vgl. AND in Anhang B),

24

LD

Hochschule Neu-Ulm
University of Applied Sciences

kann er aulder p auch m sein, so dass falschlicherweise auch die Abteilung ausgegeben wird,
in der Peter Muller selbst arbeitet — auch wenn dort kein Freund von ihm arbeitet.
SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung
FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m
ON m.ArbeitetinAbteilungsNr = a.AbteilungsNr
JOIN AbteilungsDB.IstBefreundetMit bf ON (bf.PersonalNr1 = m.PersonalNr
OR bf.PersonalNr2 = m.PersonalNr)
JOIN AbteilungsDB.Mitarbeiter p ON (p.PersonalNr = bf.PersonalNr1
OR p.PersonalNr = bf.PersonalNr2)
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Mdller'

26. Die Standorte von Abteilungen, in denen Freunde des Mitarbeiters Peter Miiller arbeiten
Hier sind die Join-Bedingungen unsinnig. Es wird zwar ein Join der Tabelle m (Peter Miiller) mit
IstBefreundetMit (ibm) durchgefiihrt, aber ibm ansonsten nicht verwendet. Stattdessen bewirkt
die Bedingung a.AbteilungsNr = m.ArbeitetinAbteilungsNr, dass a die Abteilung ist, in der Peter
Muiller arbeitet, so dass sein eigener Standort ausgegeben wird.
SELECT DISTINCT s.StandortNr, s.Ortsname
FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm
ON m.PersonalNr = ibm.PersonalNr1
OR m.PersonalNr = ibm.PersonalNr2
JOIN AbteilungsDB.Abteilung a ON (a.AbteilungsNr = m.ArbeitetinAbteilungsNr)
JOIN AbteilungsDB.Standort s ON s.StandortNr = a.StandortNr
WHERE m.Vorname = 'Peter' AND m.Nachname = 'Mller'
Die Wiederholung des Tests flhrte zu einer korrekten Losung. Wie nachfolgend dargestellt,
enthalt diese jedoch ein CASE-Konstrukt, das nicht von allen Datenbanksystemen unterstitzt
wird.
SELECT DISTINCT s.StandortNr, s.Ortsname
FROM Mitarbeiter peter JOIN IstBefreundetMit f
ON peter.PersonalNr = f.PersonalNr1 OR peter.PersonalNr = f.PersonalNr2
JOIN Mitarbeiter freund
ON freund.PersonalNr = CASE
WHEN f.PersonalNr1 = peter.PersonalNr THEN f.PersonalNr2
ELSE f.PersonalNr1
END
JOIN Abteilung a ON freund.ArbeitetinAbteilungsNr = a.AbteilungsNr
JOIN Standort s ON a.StandortNr = s.StandortNr
WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Muller'

28. Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Miiller

Die generierte Abfrage ist falsch, weil der Mitarbeiter m ausgegeben wird. Dieser ist wegen den
ersten beiden Join-Bedingungen mit Peter Muller (pm) befreundet. Es sollen aber nicht seine
Freunde ausgegeben werden, sondern deren Abteilungskollegen.

Die 1. Bedingung in der WHERE-Klausel fiihrt dazu, dass pm = Peter Miller ist. Eine weitere
WHERE-KIlausel in der Sub-Query mit derselben Bedingung ist unsinnig.

25

LD

Hochschule Neu-Ulm
University of Applied Sciences

SELECT m.PersonalNr, m.Vorname, m.Nachname
FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm
ON m.PersonalNr = ibm.PersonalNr1 OR m.PersonalNr = ibm.PersonalNr2
JOIN AbteilungsDB.Mitarbeiter pm
ON (ibm.PersonalNr1 = pm.PersonalNr OR ibm.PersonalNr2 = pm.PersonalNr)
WHERE pm.Vorname = 'Peter' AND pm.Nachname = 'Muller'
AND m.ArbeitetinAbteilungsNr = (SELECT ArbeiteninAbteilungsNr
FROM AbteilungsDB.Mitarbeiter
WHERE Vorname = 'Peter' AND Nachname = 'Miiller")

AND m.PersonalNr '= pm.PersonalNr
Eine wiederholte Ausflhrung flihrte zu einer anderen falschen Lésung: Der ausgegebene
Mitarbeiter m ist wegen der ersten beiden Join-Bedingungen mit peter (d.h. Peter Miiller)
befreundet. Die Aufgabenstellung ,derselben Abteilung® wird also nicht erflllt, der letzte Join
andert daran nichts, weil die Tabelle Abteilung (a) ansonsten nicht verwendet wird.
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm

ON m.PersonalNr = ibm.PersonalNr1 OR m.PersonalNr = ibm.PersonalNr2
JOIN AbteilungsDB.Mitarbeiter peter ON (ibm.PersonalNr1 = peter.PersonalNr
OR ibm.PersonalNr2 = peter.PersonalNr)

JOIN AbteilungsDB.Abteilung a ON m.ArbeitetinAbteilungsNr = a.AbteilungsNr
WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Muller'

AND m.PersonalNr != peter.PersonalNr

29. Alle Vorgesetzten von Peter Miiller, auch indirekt Vorgesetzte
Die generierte Losung enthalt mehrere kleinere Fehler. So ist REKURSIVE mit K statt C
geschrieben, weswegen die SQL-Abfrage syntaktisch falsch und damit nicht ausfuhrbar ist.
Ein inhaltlicher Fehler ist, dass im 1. und 2. SELECT die Spalte VorgesetzterPersonalNr fehlt.
Deshalb ist die 1. Join-Bedingung falsch, weil es die Spalte VorgesetzterPersonalNr in der
Tabelle Vorgesetzte (v) gar nicht gibt.
SchlieBlich ist die Sub-Query eine sehr umstandliche Losung. Es ware viel einfacher, Peter
Muller direkt aufgrund seines Namens in der Tabelle v auszuschlie3en.
WITH REKURSIVE Vorgesetzte AS (

-- Basis: Peter Miiller ist der Startpunkt

SELECT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter m

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Muiller'

UNION ALL

-- Rekursion: Vorgesetzte der gefundenen Personen

SELECT m.PersonalNr, m.Vorname, m.Nachname

FROM AbteilungsDB.Mitarbeiter m JOIN Vorgesetzte v

ON m.PersonalNr = v.VorgesetzterPersonalNr

26

LD

Hochschule Neu-Ulm
University of Applied Sciences

-- Auswahl der endgultigen Vorgesetzten
SELECT DISTINCT v.PersonalNr, v.Vorname, v.Nachname
FROM Vorgesetzte v
WHERE v.PersonalNr != (SELECT PersonalNr
FROM AbteilungsDB.Mitarbeiter
WHERE Vorname = 'Peter' AND Nachname = 'Muiller")

Eine Wiederholung des Tests fiihrte zu folgender korrekten Lésung:
WITH RECURSIVE Vorgesetzte AS (

-- Start mit Peter Muller, um seine direkten Vorgesetzten zu finden

SELECT PersonalNr, Vorname, Nachname, VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter

WHERE Vorname = 'Peter' AND Nachname = 'Miller'

UNION ALL

-- Rekursive Abfrage: alle Vorgesetzten der bereits gefundenen Vorgesetzten

SELECT m.PersonalNr, m.Vorname, m.Nachname, m.VorgesetzterPersonalNr

FROM AbteilungsDB.Mitarbeiter m INNER JOIN Vorgesetzte v

ON m.PersonalNr = v.VorgesetzterPersonalNr

)
SELECT PersonalNr, Vorname, Nachname
FROM Vorgesetzte
Bei einem 3. Test fehlte wieder die Spalte VorgesetzterPersonalNr (wie beim 1. Test), aber
zumindest RECURSIVE war korrekt geschrieben.

30. Die Abteilungen, in denen Vorgesetzte von Peter Mliller arbeiten, auch indirekt Vorgesetzte
Hier wurde eine falsche Losung generiert, in der die indirekten Vorgesetzte fehlen, weil gar
keine Rekursion (CTE) in der Abfrage genutzt wird.
Zudem ist der Mitarbeiter v (Peter Muller) der Vorgesetzte der Mitarbeiter m
(m.VorgesetzterPersonalNr = v.PersonalNr), deren Abteilungen ausgegeben werden. Korrekt
ware jedoch, die Abteilungen der Vorgesetzten auszugeben, und nicht die der Untergeordneten
von Peter Mller.
SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung
FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m
ON a.AbteilungsNr = m.ArbeitetinAbteilungsNr

JOIN AbteilungsDB.Mitarbeiter v ON m.VorgesetzterPersonalNr = v.PersonalNr
WHERE v.Vorname = 'Peter' AND v.Nachname = 'Miller'
Die Wiederholung des Tests fihrte wieder zu einer Abfrage ohne Rekursion (CTE). Jedoch
werden jetzt genau 2 Stufen der Vorgesetztenbeziehung verwendet, d.h. der direkte
Vorgesetzte und alle Vorgesetzten ab der Stufe 3 fehlen. AulRerdem wurde Peter Meier wieder
als Vorgesetzter verwendet und nicht als Untergeordneter.
SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung
FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m

ON m.ArbeitetinAbteilungsNr = a.AbteilungsNr

JOIN AbteilungsDB.Mitarbeiter v1 ON v1.PersonalNr = m.VorgesetzterPersonalNr

JOIN AbteilungsDB.Mitarbeiter v2 ON v2.PersonalNr = v1.VorgesetzterPersonalNr
WHERE v2.Vorname = 'Peter' AND v2.Nachname = 'Muller'

27

LD

Hochschule Neu-Ulm
University of Applied Sciences

31. Die Abteilungen und die Standorte an denen Vorgesetzte von Peter Miiller arbeiten, auch
indirekt Vorgesetzte
Hier verhielt sich ChatGPT sehr seltsam, weil es keine eindeutige Antwort lieferte, sondern die
nachfolgend dargestellten beiden ,Reaktionen®. Dabei ist die Reaktion 1 korrekt. Die
Reaktion 2 ist falsch, weil die Spalte AbteilungsleiterPersonalNr (in der WHERE-Klausel)
verwendet wird, d.h. es werden die Abteilungsleiter der Vorgesetzten berticksichtigt, nicht die
Vorgesetzten selbst.
Reaktion 1
WITH RECURSIVE Vorgesetzte AS (
-- Starte mit dem direkten Vorgesetzten von Peter Miiller
SELECT m.VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter m
WHERE m.Vorname = 'Peter' AND m.Nachname = 'Muller'
UNION ALL
-- Rekursive Suche nach allen indirekten Vorgesetzten
SELECT m.VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter m JOIN Vorgesetzte v
ON m.PersonalNr = v.VorgesetzterPersonalNr
)
SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname
FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.Abteilung a
ON m.ArbeitetinAbteilungsNr = a.AbteilungsNr
JOIN AbteilungsDB.Standort s ON a.StandortNr = s.StandortNr
WHERE m.PersonalNr IN (SELECT VorgesetzterPersonalNr FROM Vorgesetzte)
Reaktion 2
WITH RECURSIVE Vorgesetzte AS (
-- Basisfall: Direkter Vorgesetzter von Peter Miller
SELECT m.VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter AS m
WHERE m.Vorname = 'Peter' AND m.Nachname = 'Mdiller'
UNION
-- Rekursiver Fall: Finde alle indirekten Vorgesetzten
SELECT m.VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter AS m
INNER JOIN Vorgesetzte v ON m.PersonalNr = v.VorgesetzterPersonalNr
)
SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname
FROM AbteilungsDB.Abteilung AS a JOIN AbteilungsDB.Standort AS s
ON a.StandortNr = s.StandortNr
WHERE a.AbteilungsleiterPersonalNr IN (SELECT VorgesetzterPersonalNr
FROM Vorgesetzte)

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Miiller befreundet sind
Die generierte Losung ist fast korrekt, wobei zusatzlich Vorgesetzte von Peter Mdller berlck-
sichtigt werden. Gewunscht war jedoch nur die Ausgabe der Abteilungsleiter von dessen

28

LD

Hochschule Neu-Ulm
University of Applied Sciences

Freunden. Grund flir den Fehler ist, dass (&hnlich wie bei der Aufgabenstellung 25) die
Bedingung fehlt, dass die Mitarbeiter m und v nicht identisch sein dirfen (vgl. AND in
Anhang B).
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM AbteilungsDB.Mitarbeiter AS m JOIN AbteilungsDB.Abteilung AS a
ON m.PersonalNr = a.AbteilungsleiterPersonalNr
JOIN AbteilungsDB.IstBefreundetMit AS ib
ON m.PersonalNr = ib.PersonalNr1 OR m.PersonalNr = ib.PersonalNr2
JOIN AbteilungsDB.Mitarbeiter AS v
ON (ib.PersonalNr1 = v.PersonalNr OR ib.PersonalNr2 = v.PersonalNr)
WHERE v.PersonalNr IN (
SELECT VorgesetzterPersonalNr
FROM AbteilungsDB.Mitarbeiter
WHERE Vorname = 'Peter' AND Nachname = 'Miiller')

3. DeepSeek (Version V3)

Dieses LLM hat in den durchgeflihrten Tests die meisten bereits beim ersten Versuch vollig
korrekten Lésungen generiert. Bei falschen Lésungen fihrte eine Wiederholung des Tests
schlieBlich zumindest zu einer teilweise (d.h. fast) korrekten Losung.

11. Der Kunde (oder die Kunden) mit dem gr6ten Umsatz

Auch hier wurde bei der urspringlichen Aufgabenstellung (,Der Kunde mit ...“) eine Abfrage
mit ,LIMIT 1“ generiert (s.u.), die nur eine einzige Zeile ausgibt. Dieser Mangel war nach der
Klarstellung der Aufgabenstellung verschwunden.

SELECT KundenNr, Name, Umsatz

FROM Kunde

ORDER BY Umsatz DESC

LIMIT 1

20. Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)
bestellt haben
Die generierte Losung ist zwar korrekt, verwendet jedoch unnétigerweise die Tabelle Kunde in
der Sub-Query. Da die KundenNr auch in der Tabelle Bestellung enthalten ist (b.KundenNr,
vgl. Join-Bedingung), konnte auch diese von der Sub-Query zurtickgegeben werden.
SELECT DISTINCT a.Strasse, a.HausNr AS HNr, a.PLZ, a.0rt
FROM KundenDB.Adresse a JOIN KundenDB.Kunde k ON a.KundenNr = k.KundenNr
WHERE k.KundenNr NOT IN (
SELECT DISTINCT k.KundenNr
FROM KundenDB.Kunde k JOIN KundenDB.Bestellung b ON k.KundenNr = b.KundenNr
JOIN KundenDB.BestellPos bp ON b.BestellNr = bp.BestellNr
JOIN KundenDB.Artikel ar ON bp.ArtikeINr = ar.ArtikelNr
WHERE ar.Gewicht = 1715)

24, Alle Abteilungen, die Freunde des Mitarbeiters Peter Miiller leiten
Wie z.B. bereits bei der Aufgabenstellung 25 beim Microsoft Copilot beschrieben, ist die unten
dargestellte Losung nur dann korrekt, wenn alle Freundschaftsbeziehungen ,doppelt” in der

29

LD

Hochschule Neu-Ulm
University of Applied Sciences

Tabelle IstBefreundetMit eingetragen sind (was aber so nicht vorgegeben war). Die generierte
Lésung wurde deshalb wieder nur als ,noch korrekt“ gewertet.
SELECT A.AbteilungsNr, A.Bezeichnung
FROM Abteilung A JOIN Mitarbeiter M ON A.AbteilungsleiterPersonalNr = M.PersonalNr
JOIN IstBefreundetMit F ON M.PersonalNr = F.PersonalNr2
JOIN Mitarbeiter PM ON F.PersonalNr1 = PM.PersonalNr
WHERE PM.Vorname = 'Peter' AND PM.Nachname = 'Muller'
Bei den nachsten beiden Aufgabenstellungen wurde jeweils eine Losung generiert, bei der
dieser Fehler vermieden wurde (obwohl die Aufgabenstellungen teilweise komplizierter sind).
Es existiert also keine ,Zuverlassigkeit* bzgl. der Qualitat der generierten SQL-Abfragen.

27. Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Miiller
Die generierte Losung ist wegen der verschachtelten Sub-Queries recht verwirrend. Au3erdem
wird unnétigerweise (vgl. Anhang B) doppelt mit dem Namen Peter Muller verglichen. Inhaltlich
ist die SQL-Abfrage fast korrekt. Der einzige Fehler ist, dass Peter Miller als sein eigener
Freund betrachtet wird. Deswegen wird falschlicherweise zusatzlich sein Abteilungsleiter
ausgegeben, und nicht nur die seiner Freunde. Denselben Fehler machte z.B. auch Microsoft
Copilot bei der Aufgabenstellung 32 und ChatGPT bei Nr. 25 und 32.
SELECT m.PersonalNr, m.Vorname, m.Nachname
FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr
WHERE a.AbteilungsNr IN (
SELECT ma.ArbeitetinAbteilungsNr
FROM Mitarbeiter ma JOIN IstBefreundetMit f
ON ma.PersonalNr = f.PersonalNr1 OR ma.PersonalNr = f.PersonalNr2
WHERE (f.PersonalNr1 =
(SELECT PersonalNr
FROM Mitarbeiter
WHERE Vorname = 'Peter' AND Nachname = 'Muiller")
OR f.PersonalNr2 =
(SELECT PersonalNr
FROM Mitarbeiter
WHERE Vorname = 'Peter' AND Nachname = 'Miiller")

)

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Miiller befreundet sind
Die zuerst generierte Losung ist fehlerhaft, weil auch der Vorgesetzte von Peter Miller ausge-
geben wird. Grund hierflr ist, dass die Mitarbeiter m und v identisch sein kénnen, z.B. wenn bei
beiden Join-Bedingungen PersonalNr1 verwendet wird. Es fehlt also wieder eine mit AND
verknipfte Bedingung, die dies explizit ausschlie3t (vgl. Anhang B).
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN IstBefreundetMit b

ON m.PersonalNr = b.PersonalNr1 OR m.PersonalNr = b.PersonalNr2
JOIN Mitarbeiter v ON (b.PersonalNr1 = v.PersonalNr OR b.PersonalNr2 = v.PersonalNr)
JOIN Mitarbeiter p ON v.VorgesetzterPersonalNr = p.PersonalNr

30

LD

Hochschule Neu-Ulm
University of Applied Sciences

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Mdller'
Die erneute Ausfuhrung dieses Tests fuhrte zu eine SQL-Abfrage, bei der dieser Fehler nicht
auftritt. Stattdessen wird jetzt aber wieder angenommen (vgl. Nr. 24), dass alle Freundschafts-
beziehungen doppelt in der Tabelle IstBefreundetMit eingetragen sind. Deswegen ist diese
Lésung lediglich als noch korrekt zu betrachten.
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr

JOIN IstBefreundetMit ibm ON m.PersonalNr = ibm.PersonalNr2

JOIN Mitarbeiter vorgesetzter ON ibm.PersonalNr1 = vorgesetzter.PersonalNr

JOIN Mitarbeiter peter ON vorgesetzter.PersonalNr = peter.VorgesetzterPersonalNr
WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Muller’'
Eine dritte Ausfihrung dieses Tests flhrte zu einer Lésung, mit derselben Unzulanglichkeit, wie
beim zweiten Versuch.

33. Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Miiller befreundet sind
Beim ersten Test wurde eine falsche Lésung generiert. Bei dieser ermittelt die 1. Sub-Query
die PersonalNr vom Abteilungsleiter von Peter Miller und gibt diese zurtick. Das zugehorige IN
sorgt daflir, dass die AbteilungsleiterPersonalNr der Abteilung a diesen Wert hat. Da es also
derselbe Abteilungsleiter sein muss, ist a die Abteilung, der Peter Muller zugeordnet ist. Durch
den 1. Join werden die Abteilungskollegen von Peter Miller ausgegeben. Die eigentlich
notwendige Beziehung IstBefreundetMit wird nicht sinnvoll verwendet. Dies ist daran zu
erkennen, dass nur ein einziger Fremdschlissel dieser N:M-Beziehung verwendet wird (in der
Join-Bedingung mit dem OR, d.h. entweder b.PersonalNr1 oder b.PersonalNr2). Der jeweils
andere Fremdschlissel kommt in gar keiner Bedingung vor, so dass die daraus resultierenden
Freunde Uberhaupt nicht ermittelt werden.
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr
JOIN IstBefreundetMit b ON a.AbteilungsleiterPersonalNr = b.PersonalNr1
OR a.AbteilungsleiterPersonalNr = b.PersonalNr2
WHERE a.AbteilungsleiterPersonalNr IN (
SELECT a2.AbteilungsleiterPersonalNr
FROM Mitarbeiter m2 JOIN Abteilung a2
ON m2.ArbeitetinAbteilungsNr = a2.AbteilungsNr
WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Miller')
AND m.PersonalNr <> (
SELECT a2.AbteilungsleiterPersonalNr
FROM Mitarbeiter m2 JOIN Abteilung a2
ON m2.ArbeitetinAbteilungsNr = a2.AbteilungsNr
WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Mller")
Eine wiederholte Ausflihrung dieses Tests flihrte zu einer korrekten Losung. Hier wird sogar
explizit beriicksichtigt, dass Freundschaftsbeziehungen evtl. nicht doppelt in der Tabelle
IstBefreundetMit eingetragen sind. Dies erfolgt durch das OR und die ersten beiden Sub-
Queries. Aufierdem wird durch das != (%) und die 3. Sub-Query der Abteilungsleiter von Peter
Miiller aus dem Ergebnis ausgeschlossen.

31

LD

Hochschule Neu-Ulm
University of Applied Sciences

Allerdings ist auch diese Lésung (durch die vielen Sub-Queries und den mehrfachen Vergleich
mit dem Namen Peter Miiller) verwirrender und komplexer als die in Anhang B dargestellte
SQL-Abfrage.
SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname
FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr
JOIN IstBefreundetMit b ON a.AbteilungsleiterPersonalNr = b.PersonalNr1
OR a.AbteilungsleiterPersonalNr = b.PersonalNr2
WHERE (
b.PersonalNr1 = (
SELECT a2.AbteilungsleiterPersonalNr
FROM Mitarbeiter m2 JOIN Abteilung a2
ON m2.ArbeitetinAbteilungsNr = a2.AbteilungsNr
WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Miller')
OR b.PersonalNr2 = (
SELECT a2.AbteilungsleiterPersonalNr
FROM Mitarbeiter m2 JOIN Abteilung a2
ON m2.ArbeitetinAbteilungsNr = a2.AbteilungsNr
WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Miller")
)
AND m.PersonalNr != (
SELECT a2.AbteilungsleiterPersonalNr
FROM Mitarbeiter m2 JOIN Abteilung a2
ON m2.ArbeitetinAbteilungsNr = a2.AbteilungsNr
WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Miller")

Sonstige Auffélligkeiten

Im Folgenden sind einige Auffalligkeiten der generierten Ergebnisse dargestellt, die
unabhangig von der reinen Korrektheit der SQL-Abfragen sind.

1. Erkldrungen durch das LLM

Alle getesteten LLMs haben, aufRer der SQL-Abfrage selbst, jeweils einen Text generiert, der
deren Funktionsweise erklart. Diese Erklarungen kénnen flr den Benutzer hilfreich sein, um die
Losung zu besser verstehen. Im Idealfall hilft dies Studierenden sogar, zukunftig fir ahnliche
Problemstellungen selbst eine entsprechende SQL-Abfrage zu erstellen. Es ist also dadurch
ein gewisser ,Lerneffekt moglich. Nachfolgend ist exemplarisch die von ChatGPT erstellte
Erklarung fur die Aufgabenstellung 27 dargestellt:

Um die Abteilungsleiter von Freunden des Mitarbeiters Peter Muller zu ermitteln, missen wir

folgende Schritte in der SQL-Abfrage durchfuhren:

1. Mitarbeiter suchen: Zuerst missen wir den PersonalNr des Mitarbeiters ,Peter Miller*
herausfinden.

2. Freunde von Peter Miiller finden: Wir ermitteln alle Freunde, die mit ,Peter Muller” Gber
die Tabelle IstBefreundetMit verknipft sind.

32

LD

Hochschule Neu-Ulm
University of Applied Sciences

3. Abteilungsleiter der Freunde finden: Fir jeden Freund suchen wir den Abteilungsleiter
der jeweiligen Abteilung, in der der Freund arbeitet.

4. Abteilungsleiter-Informationen anzeigen: Zuletzt holen wir die Daten der Abteilungsleiter,
also deren PersonalNr, Vorname, und Nachname.

Die SQL-Abfrage sieht wie folgt aus:

SELECT DISTINCT A.AbteilungsleiterPersonalNr AS PersonalNr, M.Vorname, M.Nachname

FROM AbteilungsDB.Mitarbeiter P JOIN AbteilungsDB.IstBefreundetMit IB

ON P.PersonalNr = IB.PersonalNr1 OR P.PersonalNr = IB.PersonalNr2
JOIN AbteilungsDB.Mitarbeiter F
ON (IB.PersonalNr1 = F.PersonalNr AND P.PersonalNr != IB.PersonalNr1)
OR (IB.PersonalNr2 = F.PersonalNr AND P.PersonalNr != IB.PersonalNr2)
JOIN AbteilungsDB.Abteilung A ON F.ArbeitetinAbteilungsNr = A.AbteilungsNr
JOIN AbteilungsDB.Mitarbeiter M ON A.AbteilungsleiterPersonalNr = M.PersonalNr

WHERE P.Vorname = 'Peter' AND P.Nachname = 'Muller",

Erklarung:

» Zuerst suchen wir nach dem Mitarbeiter ,Peter Muller“ in der Tabelle Mitarbeiter (abgefragt
Uber P).

* Wir verbinden die Tabelle IstBefreundetMit, um alle Freunde von Peter Miiller zu finden
(Uber die Verknipfung der PersonalNr von ,Peter Miller* mit den PersonalNr1 oder
PersonalNr2).

» Anschlieend verknipfen wir die Tabelle Abteilung, um fir jeden Freund die zugehdrige
Abteilung zu finden.

» SchlielYlich holen wir die Daten des Abteilungsleiters (liber die AbteilungsleiterPersonalNr
aus der Tabelle Abteilung), indem wir auf die Tabelle Mitarbeiter zugreifen.

Die Ergebnismenge enthalt dann die PersonalNr, den Vorname und den Nachname der

Abteilungsleiter, die fiir die Freunde von Peter Miller zustandig sind.

Allerdings waren auch die falschen Losungen mit einer teilweise ,plausibel klingenden*
Erklarung versehen. So erstellte z.B. Microsoft Copilot fiir die Aufgabenstellung 19 den
nachfolgend dargestellten Erklarungstext. Die SQL-Abfrage ist — wie bereits im vorherigen
Abschnitt erlautert — jedoch falsch, und der Erklarungstext fihrt méglicherweise dazu, dass ein
Benutzer sie fur plausibel und deshalb die SQL-Abfrage fiir korrekt halt. Dies gilt umso mehr,
als dass der Erklarungstext keinen deutlich erkennbaren ,roten Faden® besitzt, so dass
aufgrund von Begrindungen kein ,Denkfehler” (z.B. verletzte Kausalitat) erkennbar ware.

Um die Kunden zu finden, die keinen Artikel mit einem Gewicht von 1715 kg bestellt haben,
kannst du eine SQL-Abfrage verwenden, die eine Kombination aus LEFT JOIN und WHERE-
Klauseln nutzt, um die gewlnschten Ergebnisse zu filtern. Hier ist ein Beispiel fur eine solche
Abfrage:
SELECT k.KundenNr, k.Name, k.Umsatz
FROM Kunde k LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikeINr AND a.Gewicht = 1715
WHERE a.ArtikeINr IS NULL;
Diese Abfrage funktioniert wie folgt:

33

LD

Hochschule Neu-Ulm
University of Applied Sciences

1. LEFT JOIN verbindet die Tabellen Kunde, Bestellung, BestellPos und Artikel.

2. Die Bedingung AND a.Gewicht = 1715 stellt sicher, dass nur Artikel mit einem Gewicht
von 1715 kg in die Verbindung einbezogen werden.

3. Die WHERE-KIausel a.ArtikeINr IS NULL filtert die Ergebnisse, um nur die Kunden
anzuzeigen, die keinen Artikel mit einem Gewicht von 1715 kg bestellt haben.

Falls du noch weitere Fragen hast oder Hilfe benétigst, lass es mich wissen! @)

2. Verwirrende Lésungen

Die LLMs generierten teilweise sehr verwirrende Lésungen. Wie bereits im vorherigen
Abschnitt erlautert, wurden z.B. sehr viele Sub-Queries verwendet, teilweise sogar bei
Aufgabenstellungen, die problemlos ganz ohne Sub-Query I6sbar sind. Dies war unter
anderem der Fall bei ChatGPT bei der Aufgabenstellung 29 und bei DeepSeek bei den
Aufgabenstellungen 33 und 27. Bei der letzteren wurden sogar ineinander verschachtelte Sub-
Queries verwendet. In diesen war zudem auch noch der Vergleich mit dem vorgegebenen
Namen Peter Muller doppelt realisiert (d.h. in zwei dieser Sub-Queries).

Selbstverstandlich kbnnen auch solch komplexe Lésungen von einem Datenbanksystem
ausgefiuhrt werden. Problematisch ist im hier betrachteten Kontext jedoch, wenn Studierende
versuchen, die generierte SQL-Abfrage als Muster fur diese Art von Aufgabenstellung zu
erlernen. Aufgrund der unnétig komplexen SQL-Abfrage wird es fur sie schwierig sein, im Falle
einer ahnlichen Aufgabenstellung, eine korrekte Losung auf dieser Basis zu erstellen.

3. Sonstiges

Haufig wurde in den generierten SQL-Abfragen eine ,Langform® fir Namen von Tabellen
verwendet, z.B. KundenDB.Adresse. Dieses Format (also Datenbankname.Tabellenname) ist
in MySQL erlaubt und die Vorgabe der von MySQL-Workbench generierten CREATE-TABLE-
Befehle im Prompt kann eine Ursache hierflir sein. Dieses Tabellennamen-Format funktioniert
jedoch bei anderen Datenbanksystemen nicht (z.B. Microsoft Access). Aullerdem ist es
auffallig, weil es so in (normalen) Datenbank-Vorlesung nicht gelehrt wird und zudem in
Lehrblchern zu SQL so nicht verwendet wird. Dies kann also ein Indiz dafir darstellen, dass
eine SQL-Abfrage (z.B. in einer Prifung) nicht vom Studierenden erstellt, sondern mittels einer
Kl generiert wurde.

Ahnlich ist es mit der Tatsache, dass haufig Lésungen mit dem Schliisselwort JOIN anstatt
INNER JOIN generiert wurden. Auch das wird in Vorlesungen oft nicht so gelehrt und kann bei
manchen Datenbanksystemen (z.B. Microsoft Access) so nicht verwendet werden.

SchlieRlich haben alle LLMs flir die Aufgabenstellung 11 bei der Originalformulierung (der
Kunde mit dem grofiten Umsatz) eine Losung mit ,limit 1“ generiert. Dies ist keine Operation
der Relationenalgebra, wird so Ublicherweise nicht gelehrt und wird ebenfalls von manchen
Datenbanksystemen nicht unterstutzt.

Fazit

Bei den durchgeflihrten Tests hing die Qualitat der generierten SQL-Abfragen von dem jeweils
verwendeten LLM ab (wie in Abb. 3 an den Hintergrundfarben leicht erkennbar ist). Jedoch ist
die Anzahl der getesteten Aufgabenstellung und auch die Anzahl der jeweiligen Wieder-
holungen der Tests zu gering, um die Qualitat der LLMs verallgemeinerbar vergleichen zu
kénnen. Dies war auch nicht das Ziel der Experimente. Es konnte jedoch gezeigt werden, dass

34

LD

Hochschule Neu-Ulm
University of Applied Sciences

alle untersuchten LLMs nicht absolut fehlerfrei fahig sind, eine SQL-Abfrage fiir eine gegebene
Aufgabenstellung zu generieren. Es entstanden sogar falsche Losungen bei der sehr einfach
strukturierten Kunden-Datenbank und auch bei recht einfachen Aufgabenstellungen (aus einer
Einfihrungsvorlesung zum Thema Datenbanken).

Bei dem komplexeren Schema der Firmen-Datenbank wurden deutlich mehr falsche Abfragen
generiert. Fehler waren unter anderem eine falsche Verwendung der rekursiven Beziehungen
(z.B. IstBefreundetMit) oder die Benutzung der falschen Beziehung, wenn mehrere zwischen
denselben Tabellen existieren. Dass in diesen Fallen mehr Fehler auftreten ist auch
nachvollziehbar, weil mehrere Fremdschlissel-Attribute existieren, so dass ein falsches
verwendet werden kann. Zudem waren die resultierenden Join-Bedingungen bei manchen
Aufgabenstellungen komplexer. Entsprechende Szenarien entsprechen (wie bei der
Literaturanalyse dargestellt) aber eher dem, was in einem realen betrieblichen Umfeld zu
erwarten ist (dann evtl. aber mit noch deutlich mehr Tabellen und Spalten).

Zusammenfassend lasst sich feststellen, dass die Generierung von SQL-Abfragen keineswegs
fehlerfrei erfolgt ist. Deshalb sind deren Kontrolle und ggf. Uberarbeitung durch den Benutzer
erforderlich. Andererseits wurden (insb. durch DeepSeek) so gute Abfragen generiert, dass
deren Verwendung in einer Prifung zu einem besseren Ergebnis flihren kann, als deren
selbststandige Erstellung (zumindest bei Studierenden mit schlechten SQL-Kenntnissen).

Schlussfolgerungen

Im Folgenden werden einige Konsequenzen abgeleitet, sowohl fur die Generierung von SQL-
Abfragen im beruflichen Umfeld als auch fiir die Lehre.

SQL-Generierung in der betrieblichen Praxis

Folgende Vorgehensweisen fur die Erstellung von SQL-Abfragen sind theoretisch denkbar:

1. Generierung von SQL-Anweisungen ohne deren Kontrolle:
Die durchgefuhrten Tests basierten allesamt auf Datenbank-Schemata und Aufgaben-
stellungen, die, verglichen mit einem beruflichen Umfeld, recht einfach waren. Dennoch
wurden vollig falsche oder unzulangliche SQL-Abfragen generiert. Auch die Literaturanalyse
bestatigt diesen Sachverhalt. Daraus folgt, dass die Verwendung von automatisch
generierten Ergebnissen ohne weitere Kontrolle nicht sinnvoll ist.

2. Generierung von SQL-Anweisungen mit anschlieBender Kontrolle:
Eine akzeptable Moglichkeit ist, sich flr eine gegebene Problemstellung die zugehdrige
SQL-Abfrage generieren zu lassen und dann zu Uberprufen. Hierfur sind ahnliche SQL-
Kenntnisse erforderlich, wie fir die selbststandige Erstellung der Abfrage. Evitl. lasst sich so
jedoch Arbeitszeit einsparen. Allerdings birgt diese Vorgehensweise die Gefahr, dass Fehler
im generierten Programm-Code Ubersehen werden, weil der Benutzer nicht zuerst selbst
Uber die Problemstellung nachgedacht hat. Dann kann eine falsche Lésung durchaus
plausibel wirken. Die (im vorherigen Abschnitt bereits diskutierten) Erklarungstexte des
LLMs koénnen zusatzlich dazu fihren, dass man die erlauterte Funktionsweise einer falschen
Lésung plausibel findet. Durch die teilweise sehr verwirrenden SQL-Abfragen, welche die
LLMs generieren, wird es fir den Benutzer zusatzlich erschwert, Fehler als solche zu
erkennen.

35

LD

Hochschule Neu-Ulm
University of Applied Sciences

3.

Manuelle Erstellung und anschlieRende SQL-Generierung zur Uberpriifung:

Vermutlich ist es die sicherste Vorgehensweise, eine Losung zuerst manuell zu erstellen.
Danach kann eine generierte SQL-Abfrage genutzt werden, um so nach Fehlern in der
eigenen Losung zu suchen. Beispielsweise kann die in einer generierten SQL-Abfrage
enthaltene Bedingung ,AND p.PersonalNr <> AbtLeiter.PersonalNr* (vgl. Aufgaben-
stellung 24 im Anhang B) dazu flhren, dass der Benutzer erkennt, dass der Abteilungsleiter
(AbtLeiter) ansonsten mit der Person (p) identisch sein kann. Ahnlich kann hier wegen der
generierten Oder-Verknupfung ,OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2*
erkannt werden, dass Freundschaften nicht doppelt in der Tabelle IstBefreundetMit
gespeichert sind (oder eben doch, weshalb diese Bedingung weggelassen werden kann, um
so eine bessere Ausfiihrungsgeschwindigkeit zu erzielen). Idealerweise wird die selbst
erstellte SQL-Abfrage mit mehreren generierten Losungen verglichen, wobei hierfir
unterschiedliche LLMs verwendet werden sollten.

Die akzeptablen Vorgehensweisen 2 und 3 haben gemeinsam, dass hierflir gute SQL-
Kenntnisse erforderlich sind.

Auswirkungen auf die Lehre

Im Folgenden werden einige Aspekte dargestellt, welche die zuklinftige Gestaltung von
Lehrveranstaltungen und Prifungen betreffen.

1.

SQL weiterhin Thema in der Lehre:

Eine Erkenntnis dieser Arbeit ist, dass Mitarbeiter weiterhin SQL-Kompetenzen bendtigen.
Der Grund dafur ist, dass von einer Kl generierte Losungen zwar haufig korrekt sind, man
sich aber nicht darauf verlassen kann. Obwohl insb. DeepSeek haufig korrekte SQL-
Abfragen erstellt hat, war dies nicht bei jeder Wiederholung desselben Experiments der Fall,
d.h. teilweise erst bei der 2. Durchflihrung des Tests. Da die Tests unabhangig voneinander
durchgefliihrt wurden, kann nattrlich ebenso die erste Losung korrekt sein und die nach-
folgend durchgefuhrten Tests zu einem falschen Ergebnis fuhren. Zudem entstand bei einer
geringfugig veranderten Aufgabenstellung beim selben LLM manchmal eine fehlerhafte (z.B.
DeepSeek Aufgabe 24) und manchmal eine korrekte Losung (Aufgabe 25 und 26). Der
Benutzer muss die generierten SQL-Abfragen also verstehen und tberprifen kénnen.
Hierfur sind gute SQL-Kenntnisse erforderlich, weil die Fehler teilweise schwer zu finden
sind (wie u.a. bei Microsoft Copilot flir Aufgabe 30 diskutiert).

Dasselbe qilt fuir die Vorgehensweise, das Prompt um Erklarungen und Beispiele anzu-
reichern. Die generierten Ergebnisse mussen dennoch uberprift werden, weil diese
Vorgehensweise zwar manchmal zu einer fehlerfreien Losung flihrt (vgl. Copilot Auf-

gabe 16b. bis d.), ein zusatzliches Beispiel aber auch in einer falschen Losung resultieren
kann (vgl. Copilot Aufgabe 18). Auch sehr ausfuhrliche Erklarungen und Beispiele fuhren
also nicht zuverlassig zu einer korrekten SQL-Abfrage. Deshalb ist es weiterhin erforderlich,
dass das Erstellen von SQL-Abfragen im Rahmen von Datenbank-Vorlesungen gelehrt wird.
Evtl. sollte hier jedoch der Aspekt des Verstehens und Uberpriifens von SQL-Abfragen
gestarkt werden.

. Unterstlitzung des Lernens durch LLMs:

Alle getesteten LLMs haben zusatzlich zur geforderten SQL-Abfrage auch Erklarungstexte
generiert. Diese kdnnen helfen, den generierten SQL-Code zu verstehen und damit das

36

LD

Hochschule Neu-Ulm
University of Applied Sciences

Erlernen von SQL unterstutzen. Allerdings kann ein Erklarungstext bei einer falsch
generierten SQL-Abfrage auch nachteilig sein, da dieser dann meisten ebenfalls inhaltlich
falsch sein wird. Dies ist flr Studierende evtl. schwer erkennbar, so dass sie annehmen, die
Losung und die Begriindung seien korrekt. Es kann sich dann nachteilig auf den Lernerfolg
auswirken, wenn falsche Lésungen als Muster fiir diese Art von Problemstellung verinner-
licht werden.

Ahnlich negativ fir den Lerneffekt ist, dass die LLMs teilweise unnétig komplexe SQL-
Abfragen generieren. Werden solche Lésungen zum Lernen verwendet, dann versuchen
Studierende sich diese als Muster fur eine bestimmte Art von Aufgabenstellung einzu-
pragen. Bei sehr komplexen SQL-Abfragen ist das jedoch schwierig und spater wird es ein
Problem darstellen, eine Losung fiir eine dhnliche Aufgabenstellung korrekt zu reprodu-
zieren. Es ist einfacher, kirzere und gut strukturierte Losungen (vgl. Anhang B) zu
verstehen, wie sie z.B. in einem Lehrbuch vermittelt werden.

. Auswirkungen auf Prifungen:

Die generierten Ergebnisse (insb. bei DeepSeek) sind recht gut. Deshalb kann es flr
Studierende mit beschrankten SQL-Kenntnissen vorteilhaft sein (d.h. es flhrt zu einer
besseren Note), sich SQL-Abfragen von einem LLM generieren zu lassen, anstatt selbst
eine Lésung zu erstellen. Dies gilt sogar, wenn sie die von der Kl erstellten SQL-Abfragen
Uberhaupt nicht verstehen und deshalb auch nicht tUberprifen oder verbessern kénnen.
Daraus folgt, dass eine auf3erhalb eines tUberwachten Prifungsraums abgelegte Leistung
(z.B. eine Projektarbeit, Ausarbeitung, 0.a.) keinen gréRReren Einfluss auf die resultierende
Zeugnisnote haben sollte.

Zusammenfassung, Limitationen und Ausblick

In dieser Arbeit wurde wissenschaftliche Literatur zum Thema SQL-Generierung mittels eines
LLMs analysiert. AuRerdem wurden mit drei aktuell populdren LLMs hierzu Tests durchgefiihrt.
Die Erkenntnis aus beidem ist, dass die Qualitat von generierten SQL-Abfragen heutzutage
zwar gut ist, aber diese keinesfalls zuverlassig fehlerfrei sind. Ziel war es, Auswirkungen auf
die zukunftig fir Hochschulabsolventen erforderlichen Fahigkeiten und die Gestaltung von
Lehrveranstaltungen zum Thema Datenbanken zu ermitteln. Da die entsprechenden Schluss-
folgerungen im vorherigen Abschnitt bereits ausfihrlich erlautert wurden, werden nachfolgend
nur die wichtigsten Ergebnisse kurz zusammengefasst:

SQL muss weiterhin ein Bestandteil der Datenbank-Lehre sein, weil generierte SQL-
Abfragen zumindest Uberprft und ggf. korrigiert werden missen.

Von LLMs generierte SQL-Abfragen kénnen Studierenden beim Lernen helfen. Da LLMs
auch falsche oder verwirrende SQL-Abfragen generieren, birgt diese Vorgehensweise aber
auch Risiken.

Weil generierte SQL-Abfragen teilweise eine gute Qualitat haben, sollten entsprechende
Prifungen nur einem Uberwachten Prifungsraum durchgefiihrt werden bzw. auf3erhalb
dieses Raums erstellte Prifungsleistungen allenfalls einen kleinen Einfluss auf die
Gesamtnote haben.

Die mit den LLMs durchgeflhrten Test lassen keinen verallgemeinerbaren oder quantitativen
Vergleich von deren Fahigkeit zur SQL-Generierung zu. Hierfir wurden zu wenige Wieder-
holungen fir eine Aufgabenstellung durchgeflhrt und zudem zu wenige unterschiedliche

37

LD

Hochschule Neu-Ulm
University of Applied Sciences

Aufgabenstellungen getestet. AuBerdem ist es moglich, dass bei einem anderen Szenario oder
aus einer anderen Formulierung der Aufgabenstellungen ein abweichendes Ergebnis resultiert.
Ziel war lediglich, einen ersten Eindruck bzgl. der Leistungsfahigkeit verschiedener LLMs zu
gewinnen. Die Schlussfolgerungen fir die Gestaltung zukiinftiger Lehrveranstaltungen sind
nicht formal belegbar und nicht mittels einer Studie Uberprift. Evtl. sind sie auch teilweise
durch die eigene Lehrerfahrung des Autors gepragt und damit nicht objektiv.

Der von einem LLM generierte Text ist stets abhangig von den verwendeten Lerndaten. Da
dem Autor unbekannt ist, ob die verwendeten Szenarien in diesen besonders haufig oder
besonders selten vorkommen, kdnnten zukinftig noch Tests mit anderen Szenarien
durchgefiihrt werden. AuRerdem ware es maoglich, zukiinftig ahnliche Experiment flir andere
Datenbank-Themen durchzuflihren, wie z.B. die Generierung eines Entity-Relationship-
Diagramm aus einer vorgegebene Szenariobeschreibung, die Ableitung der daraus
resultierenden Datenbanktabellen oder die Generierung eines Programms, das SQL-
Anweisungen enthalt (z.B. ein Java-Programm mit JDBC-Anweisungen).

Literatur

Bhaskar, A., Tomar, T., Sathe, A., Sarawagi, S., 2023. Benchmarking and Improving Text-to-
SQL Generation under Ambiguity. arXiv:2310.13659.
https://doi.org/10.48550/arXiv.2310.13659

Biswal, A., Patel, L., Jha, S., Kamsetty, A., Liu, S., Gonzalez, J.E., Guestrin, C., Zaharia, M.,
2024. Text2SQL is Not Enough: Unifying Al and Databases with TAG.
arXiv:2408.14717. https://doi.org/10.48550/arXiv.2408.14717

Campos, J., Garcia, G., A. De Sousa, J., Corseuil, E., Izquierdo, Y., Lemos, M., Casanova, M.,
2025. Text-to-SQL Experiments with Engineering Data Extracted from CAD Files, in:
Proc. 27th Int. Conf. on Enterprise Information Systems, Y. Porto, pp. 343-350.
https://doi.org/10.5220/0013436800003929

Carr, N., Shawon, F.R., Jamil, H.M., 2023. An Experiment on Leveraging ChatGPT for Online
Teaching and Assessment of Database Students, in: Proc. IEEE Conf. on Teaching,
Assessment and Learning for Engineering. pp. 1-8.
https://doi.org/10.1109/TALE56641.2023.10398239

Dixit, R., Gajjam, N., 2024. Al2SQL.io: Empowering SQL Learning and SocialChange Through
IT-Enabled Smart Tutoring in Computer Science and Engineering, in: Proc. Int. Conf. on
Artificial Intelligence and Quantum Computation-Based Sensor Application. pp. 1-5.
https://doi.org/10.1109/ICAIQSA64000.2024.10882332

Dong, X., Zhang, C., Ge, Y., Mao, Y., Gao, Y., Chen, lu, Lin, J., Lou, D., 2023. C3: Zero-shot
Text-to-SQL with ChatGPT. arXiv:2307.07306.
https://doi.org/10.48550/arXiv.2307.07306

Farinetti, L., Cagliero, L., 2025. A Critical Approach to ChatGPT: An Experience in SQL
Learning, in: Proc. 56th ACM Technical Symposium on Computer Science Education.
ACM, Pittsburgh, pp. 318-324. https://doi.org/10.1145/3641554.3701932

Floratou, A., Psallidas, F., Zhao, F., Deep, S., Hagleither, G., Cahoon, J., Alotaibi, R., Henkel,
J., Singla, A., van Grootel, A., Deng, K., Lin, K., Campos, M., Emani, V., Pandit, V.,
Wang, W., Curino, C., 2024. NL2SQL is a Solved Problem... Not!, in: Proc. Conf. on
Innovative Data Systems Research.

Gaitantzi, A., Kazanidis, ., 2025. The Role of Artificial Intelligence in Computer Science
Education: A Systematic Review with a Focus on Database Instruction. Applied
Sciences 15, 3960. https://doi.org/10.3390/app15073960

Ganesan, S., Gong, T., Lee, J., 2024. SQLearn: Automated SQL Statement Assessment using
Structure-based Analysis, in: Proc. 55th ACM Technical Symposium on Computer
Science Education. ACM, Portland, pp. 1644—1645.
https://doi.org/10.1145/3626253.3635607

38

LD

Hochschule Neu-Ulm
University of Applied Sciences

Ganti, M., Orr, L., Wu, S., 2024. Evaluating Text-to-SQL Model Failures on Real-World Data,
in: Proc, IEEE 40th Int. Conf. on Data Engineering.
https://doi.org/10.1109/ICDE60146.2024.00456

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., Zhou, J., 2023. Text-to-SQL Empowered
by Large Language Models: A Benchmark Evaluation. arXiv:2308.15363.
https://doi.org/10.48550/arXiv.2308.15363

Hong, S.H., Storey, V.C., 2023. Teaching SQL Using ChatGPT, in: Proc. 29th Americas Conf.
on Information Systems. Panama.

Kim, H., So, B.-H., Han, W.-S., Lee, H., 2020. Natural Language to SQL: Where are we Today?
Proc. VLDB Endowment 13, 1737-1750. https://doi.org/10.14778/3401960.3401970

Lan, W., Wang, Z., Chauhan, A., Zhu, H., Li, A., Guo, J., Zhang, S., Hang, C.-W., Lilien, J., Hu,
Y., Pan, L., Dong, M., Wang, J., Jiang, J., Ash, S., Castelli, V., Ng, P., Xiang, B., 2023.
UNITE: A Unified Benchmark for Text-to-SQL Evaluation. arXiv:2305.16265.
https://doi.org/10.48550/arXiv.2305.16265

Lee, G., Chay, W., Cho, S., Choi, E., 2024. TrustSQL: Benchmarking Text-to-SQL Reliability
with Penalty-Based Scoring. arXiv:2403.15879.
https://doi.org/10.48550/arXiv.2403.15879

Li, J., Hui, B., Qu, G., Yang, J., Li, Binhua, Li, Bowen, Wang, B., Qin, B., Geng, R., Huo, N.,
Zhou, X., Chenhao, M., Li, G., Chang, K., Huang, F., Cheng, R., Li, Y., 2023. Can LLM
Already Serve as a Database Interface? A Big Bench for Large-Scale Database
Grounded Text-to-SQLs. Advances in Neural Information Processing Systems 36,
42330-42357.

Liu, A., Hu, X., Wen, L., Yu, P.S., 2023. A Comprehensive Evaluation of ChatGPT’s Zero-shot
Text-to-SQL Capability. arXiv:2303.13547. https://doi.org/10.48550/arXiv.2303.13547

Liu, X., Shen, S., Li, B., Ma, P., Jiang, R., Zhang, Y., Fan, J., Li, G., Tang, N., Luo, Y., 2025. A
Survey of NL2SQL with Large Language Models: Where are we, and where are we
going? https://doi.org/10.48550/arXiv.2408.05109

Ma, L., Pu, K., Zhu, Y., 2024. Evaluating LLMs for Text-to-SQL Generation With Complex SQL
Workload. arXiv:2407.19517. https://doi.org/10.48550/arXiv.2407.19517

Matek, T., Zrnec, A., Lavbi¢, D., 2017. Learning SQL with Artificial Intelligent Aided Approach.
Int. Journal of Information and Education Technology 7, 803—-808.
https://doi.org/10.18178l/ijiet.2017.7.11.976

Mohammadjafari, A., Maida, A.S., Gottumukkala, R., 2025. From Natural Language to SQL.:
Review of LLM-based Text-to-SQL Systems. arXiv:2410.01066.
https://doi.org/10.48550/arXiv.2410.01066

Nascimento, E., Avila, C., Izquierdo, Y., Garcia, G., Andrade, L., Facina, M., Lemos, M.,
Casanova, M., 2025. On the Text-to-SQL Task Supported by Database Keyword
Search, in: Proc. 27th Int. Conf. on Enterprise Information Systems. Porto, pp. 173-180.
https://doi.org/10.5220/0013126300003929

Poess, M., Floyd, C., 2000. New TPC Benchmarks for Decision Support and Web Commerce.
ACM SIGMOD Record 29, 64—71. https://doi.org/10.1145/369275.369291

Pornphol, P., Chittayasothorn, S., 2023. Verification of Relational Database Languages Codes
Generated by ChatGPT, in: Proc. 4th Asia Service Sciences and Software Engineering
Conference. ACM, Aizu-Wakamatsu City, pp. 17-22.
https://doi.org/10.1145/3634814.3634817

Prakash, K., Rao, S., Hamza, R., Lukich, J., Chaudhari, V., Nandi, A., 2024. Integrating LLMs
into Database Systems Education, in: Proc. 3rd Int. Workshop on Data Systems
Education: Bridging Education Practice with Education Research. ACM, Santiago, pp.
33-39. https://doi.org/10.1145/3663649.3664371

Qin, B., Hui, B., Wang, L., Yang, M., Li, J., Li, B., Geng, R., Cao, R, Sun, J., Si, L., Huang, F.,
Li, Y., 2022. A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions. arXiv:2208.13629. https://doi.org/10.48550/arXiv.2208.13629

Shi, L., Tang, Z., Zhang, N., Zhang, X., Yang, Z., 2024. A Survey on Employing Large
Language Models for Text-to-SQL Tasks. arXiv:2407.15186.
https://doi.org/10.48550/arXiv.2407.15186

39

LD

Hochschule Neu-Ulm
University of Applied Sciences

Steinberger, C., Wedam, A., 2025. Facilitate Flipped SQL-Classrooms with Text-Generating Al,
in: Auer, M.E., Radtmann, T. (Eds.), Futureproofing Engineering Education for Global
Responsibility. Springer Nature Switzerland, pp. 451-461. https://doi.org/10.1007/978-
3-031-85652-5_45

Sun, S., Zhang, Y., Yan, J., Gao, Y., Ong, D., Chen, B., Su, J., 2023. Battle of the Large
Language Models: Dolly vs LLaMA vs Vicuna vs Guanaco vs Bard vs ChatGPT - A
Text-to-SQL Parsing Comparison. arXiv:2310.10190.
https://doi.org/10.48550/arXiv.2310.10190

Taipalus, T., Seppanen, V., 2020. SQL Education: A Systematic Mapping Study and Future
Research Agenda. ACM Transactions on Computing Education 20, 1-33.
https://doi.org/10.1145/3398377

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, |, Yao, Q., Roman, S.,
Zhang, Z., Radev, D., 2019. Spider: A Large-Scale Human-Labeled Dataset for
Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task.
arXiv:1809.08887. https://doi.org/10.48550/arXiv.1809.08887

Zhang, B., Ye, Y., Du, G., Hu, X., Li, Zhishuai, Yang, S., Liu, C.H., Zhao, R., Li, Ziyue, Mao, H.,
2024. Benchmarking the Text-to-SQL Capability of Large Language Models: A
Comprehensive Evaluation. arXiv:2403.02951.
https://doi.org/10.48550/arXiv.2403.02951

Zhang, X., 2025. Teaching Tip Incorporating Al Tools Into Database Classes. Journal of
Information Systems Education 36, 37-52. https://doi.org/10.62273/GKZI2477

40

LD

Hochschule Neu-Ulm
University of Applied Sciences

Anhang A: Ubersicht iiber die Aufgabenstellungen

Auf Basis der Kunden-Datenbank (vgl. Abb. 1):

1.
Anzeige aller Zahlungsarten, bei denen ein ,@“ in der Bezeichnung vorkommt.
Auszugebende Ergebnisspalten: ZahlArtNr, Bezeichnung

2.
Alle Bestellungen und die zugehdrige Rechnungsnummer, sortiert nach BestellNr.
Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum, RechnungsNr

3.

Alle Bestellungen und die zugehdrige Rechnungsnummer, sortiert nach BestellNr, inkl. der
Bestellungen, fir die (noch) keine Rechnung existiert.

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum, RechnungsNr

4.

Alle Bestellungen sortiert nach BestellNr, aber nur Bestellungen, fiir die (noch) keine Rechnung
existiert.

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum

5.
Anzahl der Bestellungen je Artikel.
Auszugebende Ergebnisspalten: ArtikelNr, Artikelname, Anzahl Bestellungen

6.
Preis (aus Tabelle Bestellposition) des teuersten Artikels, den AVIS bestellt hat.
Auszugebende Ergebnisspalten: Preis, das Ergebnis soll nur 1 Zeile enthalten

7.

Alle besonderen Kunden, d.h. alle Problemkunden und alle Premiumkunden — aber nicht die
,normalen“ Kunden.

Auszugebende Ergebnisspalten: KundenNr, Name, Anzahl Zahlungsausfalle (bei
Problemkunden) bzw. Kundenbewertung (bei Problemkunden)

8.

Errechnetes Gesamtgewicht und Gesamtherstellkosten aufgeschlisselt nach Bestelldatum fiir
Bestellungen aus dem Jahr 2024.

Auszugebende Ergebnisspalten: Bestelldatum, Gesamtgewicht, Gesamtherstellkosten

9.

Alle Kundendaten, auch fir Kunden bei denen einige Daten undefiniert sind.

Auszugebende Ergebnisspalten: KundenNr, Kundenname, Ort, PLZ, Key-Account-Mgr, Anzahl
Zahlungsausfalle

10.

Ubersicht iber die Bestellungen mit zugehérigen Detaildaten.

Auszugebende Ergebnisspalten: BestellNr, Kundenname, Anzahl Bestellpositionen, Preis des
teuersten Artikels

41

LD

Hochschule Neu-Ulm
University of Applied Sciences

11.
Der Kunde (oder die Kunden) mit dem grélten Umsatz.
Auszugebende Ergebnisspalten: Ergebnisspalten: KundenNr, Name, Umsatz

12.
Alle Kunden, die mind. 2 Bestellpositionen haben.
Auszugebende Ergebnisspalten: KundenNr, Name

13.
Alle Kunden, ohne Bestellpositionen.
Auszugebende Ergebnisspalten: KundenNr, Name

14.

Alle Kunden, die mind. fiur 100.000€ bestellt haben, basierend auf Preis & Anzahl aus
BestellPos.

Auszugebende Ergebnisspalten: KundenNr, Name

15.

Zahlungsarten, die ein Kunde mit mehr als 2 Mio € Umsatz benutzt hat, sowie zusatzlich
Artikel, die in einer Bestellposition als PosNr 1 oder 2 bestellt wurden.

Auszugebende Ergebnisspalten: Nr, Bezeichnung bzw. Name

16.
Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 (kg) bestellt wurde.
Auszugebende Ergebnisspalten: BestellNr, Datum, KundenNr

17.
Alle Zahlungsarten von Kunden, die den Artikel smart4two bestellt haben.
Auszugebende Ergebnisspalten: ZahlArtNr, (Zahlungsart-)Bezeichnung, (Kunden)Name

18.
Kunden, die die Zahlungsart Kreditkarte nie verwendet haben.
Auszugebende Ergebnisspalten: KundenNr, Name

19.
Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.
Auszugebende Ergebnisspalten: KundenNr, Name, Umsatz

20.

Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt
haben.

Auszugebende Ergebnisspalten: Strasse, HNr, PLZ, Ort

21.

Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg)
bestellt haben.

Auszugebende Ergebnisspalten: ZahlungsartNr, Bezeichnung

42

LD

Hochschule Neu-Ulm
University of Applied Sciences

Auf Basis der Firmen-Datenbank (vgl. Abb. 2):

22.
Der Abteilungsleiter der Abteilung "Marketing".
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

23.
Alle Mitarbeiter, die in der Abteilung "Marketing" angestellt sind.
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

24.
Alle Abteilungen, die Freunde des Mitarbeiters Peter Muller leiten.
Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung

25.
Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Mdller arbeiten.
Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung

26.
Die Standorte von Abteilungen, in denen Freunde des Mitarbeiters Peter Miller arbeiten.
Auszugebende Ergebnisspalten: StandortNr, Ortsname

27.
Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Miller.
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

28.
Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Miller.
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

29.
Alle Vorgesetzten von Peter Miller, auch indirekt Vorgesetzte.
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

30.
Die Abteilungen, in denen Vorgesetzte von Peter Muller arbeiten, auch indirekt Vorgesetzte.
Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung

31.

Die Abteilungen und die Standorte, an denen Vorgesetzte von Peter Miller arbeiten, auch
indirekt Vorgesetzte.

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung, StandortNr, Ortsname

32.
Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Miiller befreundet sind
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

33.
Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Miiller befreundet sind
Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname

43

LD

Hochschule Neu-Ulm
University of Applied Sciences

Anhang B: Mogliche Losungen fuir die Aufgabenstellungen

Auf Basis der Kunden-Datenbank (vgl. Abb. 1):

1.

SELECT ZahlArtNr, Bezeichnung
FROM Zahlungsart

WHERE Bezeichnung LIKE '%a%'

2.
SELECT Bestellung.BestellNr, Bestellung.Datum, Rechnung.RechnungsNr
FROM Bestellung INNER JOIN Rechnung
ON Bestellung.BestellNr = Rechnung.BestellNr
ORDER BY Bestellung.BestellNr

3.
SELECT Bestellung.BestellNr, Bestellung.Datum, Rechnung.RechnungsNr
FROM Bestellung LEFT OUTER JOIN Rechnung
ON Bestellung.BestellNr = Rechnung.BestellNr
ORDER BY Bestellung.BestellNr

4.

SELECT Bestellung.BestellNr, Bestellung.Datum

FROM Bestellung LEFT OUTER JOIN Rechnung
ON Bestellung.BestellNr = Rechnung.BestellNr

WHERE Rechnung.RechnungsNr IS NULL

ORDER BY Bestellung.BestellNr

5.
SELECT Artikel.ArtikeINr, Artikel. Name, COUNT (BestellNr) AS AnzahlBestellungen
FROM BestellPos INNER JOIN Artikel
ON BestellPos.ArtikeINr = Artikel.ArtikelNr
GROUP BY Artikel.ArtikeINr, Artikel.Name

6.

SELECT MAX(Bestellpos.Preis) AS PreisTeuersterArtikel

FROM (Bestellpos INNER JOIN Bestellung ON Bestellpos.BestellNr = Bestellung.BestellNr)
INNER JOIN Kunde ON Bestellung.KundenNr = Kunde.KundenNr

WHERE Name ='AVIS'

7.

SELECT Kunde.KundenNr, Name

FROM Premiumkunde INNER JOIN Kunde ON Premiumkunde.KundenNr = Kunde.KundenNr
UNION

SELECT Kunde.KundenNr, Name

FROM Problemkunde INNER JOIN Kunde ON Problemkunde.KundenNr = Kunde.KundenNr

44

LD

Hochschule Neu-Ulm
University of Applied Sciences

8.

SELECT Datum, SUM(Gewicht * Anzahl) AS Gesamtgewicht,
SUM(Herstellkosten*Anzahl) AS Gesamtherstellkosten

FROM (Bestellung INNER JOIN Bestellpos ON Bestellung.BestellNr = Bestellpos.BestellNr)
INNER JOIN Artikel ON Artikel.ArtikelNr = Bestellpos.ArtikelNr

WHERE Datum LIKE '%2024'

GROUP BY Datum

9.

SELECT Kunde.KundenNr, Kunde.Name, Ort, PLZ, KeyAccountMgr, AnzZahlungsausfalle

FROM ((Kunde LEFT OUTER JOIN Adresse ON Kunde.KundenNr = Adresse.KundenNr)
LEFT OUTER JOIN Premiumkunde ON Kunde.KundenNr = Premiumkunde.KundenNr)
LEFT OUTER JOIN Problemkunde ON Kunde.KundenNr = Problemkunde.KundenNr

10.

SELECT Bestellung.BestellNr, Kunde.Name, COUNT(Bestellpos.PosNr) AS AnzahlPositionen,
MAX(Preis) AS PreisTeuersterArtikel

FROM (Bestellung INNER JOIN Kunde ON Bestellung.KundenNr = Kunde.KundenNr)
INNER JOIN Bestellpos ON Bestellpos.BestellNr = Bestellung.BestellNr

GROUP BY Bestellung.BestellNr, Kunde.Name

11.

SELECT KundenNr, Name, Umsatz

FROM Kunde

WHERE Umsatz = (SELECT MAX(Umsatz) FROM Kunde)

12.

SELECT Kunde.KundenNr, Name

FROM (Kunde INNER JOIN Bestellung ON Kunde.KundenNr=Bestellung.KundenNr)
INNER JOIN BestellPos ON Bestellung.BestelINr=BestellPos.BestellNr

GROUP BY Kunde.KundenNr, Name

HAVING COUNT(*) >= 2

13.

SELECT Kunde.KundenNr, Name

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)
LEFT OUTER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr

WHERE PosNr IS NULL

oder:

SELECT Kunde.KundenNr, Name
FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)
WHERE Bestellung.BestellNr NOT IN (SELECT BestellNr FROM BestellPos)

oder:

45

LD

Hochschule Neu-Ulm
University of Applied Sciences

SELECT Kunde.KundenNr, Name

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)
LEFT OUTER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr

GROUP BY Kunde.KundenNr, Name

HAVING COUNT(PosNr) =0

14,

SELECT Kunde.KundenNr, Name, SUM (Preis * Anzahl) AS Gesamtpreis

FROM (Kunde INNER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)
INNER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr

GROUP BY Kunde.KundenNr, Name

HAVING SUM (Preis * Anzahl) >= 100000

15.
SELECT Zahlungsart.ZahlArtNr, Bezeichnung

FROM (Zahlungsart INNER JOIN verwendet ON Zahlungsart.ZahlArtNr = verwendet.ZahlartNr)

INNER JOIN Kunde ON verwendet.KundenNr = Kunde.KundenNr
WHERE Umsatz > 2000000
UNION
SELECT Artikel.ArtikelNr, Name
FROM Artikel INNER JOIN BestellPos ON Artikel.ArtikelNr = BestellPos.ArtikeINr
WHERE PosNr <= 2

16.
SELECT *
FROM Bestellung
WHERE BestellNr NOT IN
(SELECT BestellNr
FROM BestellPos INNER JOIN Artikel ON Artikel.ArtikeINr = BestellPos.ArtikelNr
WHERE Gewicht = 1715)

17.
SELECT Zahlungsart.ZahlArtNr, Zahlungsart.Bezeichnung, Kunde.Name
FROM ((((Zahlungsart INNER JOIN Verwendet
ON Zahlungsart.ZahlArtNr = Verwendet.ZahlArtNr)
INNER JOIN Kunde ON Verwendet.KundenNr = Kunde.KundenNr)
INNER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr)
INNER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr)
INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr
WHERE Artikel. Name = 'C320'

46

LD

Hochschule Neu-Ulm
University of Applied Sciences

18.
SELECT KundenNr, Name
FROM Kunde
WHERE KundenNr NOT IN
(SELECT KundenNr
FROM verwendet INNER JOIN Zahlungsart
ON verwendet.ZahlArtNr = Zahlungsart.ZahlArtNr
WHERE Bezeichnung = 'Kreditkarte')

19.
SELECT KundenNr, Name, Umsatz
FROM Kunde
WHERE KundenNr NOT IN (

SELECT KundenNr

FROM (Bestellung INNER JOIN BestellPos

ON Bestellung.BestellNr = BestellPos.BestellNr)
INNER JOIN Artikel ON BestellPos.ArtikeINr = Artikel.ArtikelNr
WHERE Gewicht = 1715)

20.
SELECT DISTINCT Strasse, HNr, PLZ, Ort
FROM Kunde INNER JOIN Adresse ON Kunde.KundenNr = Adresse.KundenNr
WHERE Kunde.KundenNr NOT IN (

SELECT KundenNr

FROM (Bestellung INNER JOIN BestellPos

ON Bestellung.BestellNr = BestellPos.BestellNr)
INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikeINr
WHERE Gewicht = 1715)

21.
SELECT DISTINCT Zahlungsart.ZahlArtNr, Bezeichnung
FROM (Kunde INNER JOIN verwendet ON Kunde.KundenNr = verwendet.KundenNr)

INNER JOIN Zahlungsart ON verwendet.ZahlArtNr = Zahlungsart.ZahlArtNr
WHERE Kunde.KundenNr NOT IN (

SELECT KundenNr

FROM (Bestellung INNER JOIN BestellPos

ON Bestellung.BestellNr = BestellPos.BestellNr)
INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr
WHERE Gewicht = 1715)

Auf Basis der Firmen-Datenbank (vgl. Abb. 2):

22.
SELECT Mitarbeiter.PersonalNr, Vorname, Nachname
FROM Abteilung INNER JOIN Mitarbeiter
ON Abteilung.AbteilungsleiterPersonalNr = Mitarbeiter.PersonalNr
WHERE Bezeichnung = 'Marketing'

47

LD

Hochschule Neu-Ulm
University of Applied Sciences

23.
SELECT Mitarbeiter.PersonalNr, Vorname, Nachname
FROM Abteilung INNER JOIN Mitarbeiter
ON Abteilung.AbteilungsNr = Mitarbeiter.ArbeitetinAbteilungsNr
WHERE Bezeichnung = 'Marketing'

24,
SELECT Abteilung.AbteilungsNr, Abteilung.Bezeichnung
FROM Abteilung INNER JOIN Mitarbeiter AS AbtLeiter
ON Abteilung.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr

INNER JOIN IstBefreundetMit ON (AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr1

OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2)
INNER JOIN Mitarbeiter AS p ON (IstBefreundetMit.PersonalNr1 = p.PersonalNr
OR IstBefreundetMit.PersonalNr2 = p.PersonalNr)
AND p.PersonalNr <> AbtLeiter.PersonalNr
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Mller'

25.
SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung
FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit
ON p.PersonalNr = IstBefreundetMit.PersonalNr1
OR p.PersonalNr = IstBefreundetMit.PersonalNr2
INNER JOIN Mitarbeiter AS freund
ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr
OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)
AND freund.PersonalNr <> p.PersonalNr
INNER JOIN Abteilung ON freund.ArbeitetinAbteilungsNr = Abteilung.AbteilungsNr
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Miiller'

26.
SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung
FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit
ON p.PersonalNr = IstBefreundetMit.PersonalNr1
OR p.PersonalNr = IstBefreundetMit.PersonalNr2
INNER JOIN Mitarbeiter AS freund
ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr
OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)
AND freund.PersonalNr <> p.PersonalNr
INNER JOIN Abteilung ON freund.ArbeitetinAbteilungsNr = Abteilung.AbteilungsNr
INNER JOIN Standort ON Abteilung.StandortNr = Standort.StandortNr
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Miiller'

48

LD

Hochschule Neu-Ulm
University of Applied Sciences

27.
SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname
FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit
ON p.PersonalNr = IstBefreundetMit.PersonalNr1
OR p.PersonalNr = IstBefreundetMit.PersonalNr2
INNER JOIN Mitarbeiter AS freund
ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr
OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)
AND freund.PersonalNr <> p.PersonalNr
INNER JOIN Abteilung ON freund.ArbeitetinAbteilungsNr = Abteilung.AbteilungsNr
INNER JOIN Mitarbeiter AS AbtLeiter
ON Abteilung.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr
WHERE p.Vorname = 'Peter’' AND p.Nachname = 'Mdller'

28.
SELECT DISTINCT MitarblnSelberAbt.PersonalNr,
MitarbInSelberAbt.Vorname, MitarbInSelberAbt.Nachname
FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit
ON p.PersonalNr = IstBefreundetMit.PersonalNr1
OR p.PersonalNr = IstBefreundetMit.PersonalNr2
INNER JOIN Mitarbeiter AS freund
ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr
OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)
AND freund.PersonalNr <> p.PersonalNr
INNER JOIN Abteilung ON freund.ArbeitetinAbteilungsNr = Abteilung.AbteilungsNr
INNER JOIN Mitarbeiter AS MitarbInSelberAbt
ON Abteilung.AbteilungsNr = MitarbIlnSelberAbt.ArbeitetinAbteilungsNr
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Mller'

29.
WITH RECURSIVE Vorgesetzte AS (
SELECT Mitarbeiter.PersonalNr, Mitarbeiter.Vorname,
Mitarbeiter.Nachname, Mitarbeiter.VorgesetzterPersonalNr
FROM Mitarbeiter
WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Mdiller'
UNION ALL
SELECT Mitarbeiter.PersonalNr, Mitarbeiter.Vorname, Mitarbeiter.Nachname,
Mitarbeiter.VorgesetzterPersonalNr
FROM Mitarbeiter INNER JOIN Vorgesetzte
ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr

)

SELECT PersonalNr, Vorname, Nachname
FROM Vorgesetzte

49

LD

Hochschule Neu-Ulm
University of Applied Sciences

30.
WITH RECURSIVE Vorgesetzte AS (
SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr,
Mitarbeiter.ArbeitetinAbteilungsNr
FROM Mitarbeiter
WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Mdiller'
UNION ALL
SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr,
Mitarbeiter.ArbeitetinAbteilungsNr
FROM Mitarbeiter INNER JOIN Vorgesetzte
ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr
)
SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung
FROM Abteilung INNER JOIN Vorgesetzte

31.
WITH RECURSIVE Vorgesetzte AS (
SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr
FROM Mitarbeiter
WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Miller'
UNION ALL
SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr
FROM Mitarbeiter INNER JOIN Vorgesetzte
ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr
)
SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung, Standort.StandortNr,
Standort.Ortsname
FROM Vorgesetzte INNER JOIN Mitarbeiter
ON Vorgesetzte.VorgesetzterPersonalNr = Mitarbeiter.PersonalNr
INNER JOIN Abteilung ON Mitarbeiter.ArbeitetinAbteilungsNr = Abteilung.AbteilungsNr
INNER JOIN Standort ON Abteilung.StandortNr = Standort.StandortNr;

32.
SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname
FROM Mitarbeiter AS AbtLeiter INNER JOIN Abteilung
ON AbtLeiter.PersonalNr = Abteilung.AbteilungsleiterPersonalNr
INNER JOIN IstBefreundetMit ON (AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr1
OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2)
INNER JOIN Mitarbeiter AS Vorgesetzter
ON (IstBefreundetMit.PersonalNr1 = Vorgesetzter.PersonalNr
OR IstBefreundetMit.PersonalNr2 = Vorgesetzter.PersonalNr)
AND AbtLeiter.PersonalNr <> Vorgesetzter.PersonalNr
INNER JOIN Mitarbeiter AS p ON Vorgesetzter.PersonalNr = p.VorgesetzterPersonalNr
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Mller'

50

LD

Hochschule Neu-Ulm
University of Applied Sciences

33.
SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname
FROM Mitarbeiter AS p INNER JOIN Abteilung AS Abt1
ON p.ArbeitetinAbteilungsNr = Abt1.AbteilungsNr
INNER JOIN IstBefreundetMit
ON (Abt1.AbteilungsleiterPersonalNr = IstBefreundetMit.PersonalNr1
OR Abt1.AbteilungsleiterPersonalNr = IstBefreundetMit.PersonalNr2)
INNER JOIN Abteilung AS Abt2
ON (IstBefreundetMit.PersonalNr1 = Abt2.AbteilungsleiterPersonalNr
OR IstBefreundetMit.PersonalNr2 = Abt2.AbteilungsleiterPersonalNr)
AND Abt1.AbteilungsleiterPersonalNr <> Abt2.AbteilungsleiterPersonalNr
INNER JOIN Mitarbeiter AS AbtLeiter
ON Abt2.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr
WHERE p.Vorname = 'Peter' AND p.Nachname = 'Miiller'

51

