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Abstrakt (in Deutsch; max. 10 Zeilen) 

 

Heutzutage ist es möglich, sich mittels Künstlicher Intelligenz automatisch Programmcode 

generieren zu lassen. Dies gilt auch für Datenbankabfragen, die in der Sprache SQL erstellt 

werden. Diese Möglichkeit wirft die Frage auf, ob es überhaupt noch notwendig ist, SQL im 

Rahmen von Datenbank-Vorlesungen zu lehren. Außerdem ist zu klären, inwieweit Studieren-

de die SQL-Generierung zur Erstellung von Prüfungsergebnissen nutzen können bzw. wie 

Prüfungen gestaltet sein müssen, um entsprechende Betrugsversuche zu vermeiden. Hierzu 

wird in dieser Arbeit der Stand der Forschung zum Thema SQL-Generierung dargestellt. 

Außerdem werden die Ergebnisse von Experimenten beschrieben, in welchen die Qualität von 

automatisch generierten SQL-Abfragen ermittelt wurde. 

 

Freie Schlagwörter: Datenbanken, SQL, Künstliche Intelligenz, Large Language Model 

 

 

 

 

 

JEL-Klassifikation: L86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3 

Inhaltsverzeichnis  
Motivation .................................................................................................................................... 4 
Literaturanalyse ........................................................................................................................... 4 

NL2SQL in der Lehre ............................................................................................................... 5 
Analyse der Fähigkeit zur Generierung von SQL-Abfragen ..................................................... 7 
Verbesserung von NL2SQL ..................................................................................................... 8 
Fazit ......................................................................................................................................... 9 

Aufgabenstellungen für Datenbank-Vorlesungen ..................................................................... 10 
Verwendete Szenarien ........................................................................................................... 11 
Durchführung der Experimente .............................................................................................. 13 
Auffällige Einzelergebnisse .................................................................................................... 16 

Unzulängliche Lösungen .................................................................................................... 16 
Sonstige Auffälligkeiten ...................................................................................................... 32 

Fazit ....................................................................................................................................... 34 
Schlussfolgerungen ................................................................................................................... 35 

SQL-Generierung in der betrieblichen Praxis ........................................................................ 35 
Auswirkungen auf die Lehre .................................................................................................. 36 

Zusammenfassung, Limitationen und Ausblick ......................................................................... 37 
Literatur ..................................................................................................................................... 38 
Anhang A: Übersicht über die Aufgabenstellungen .................................................................. 41 
Anhang B: Mögliche Lösungen für die Aufgabenstellungen ..................................................... 44 
 

 



 
 

4 

Motivation  
Künstliche Intelligenz (KI) ist inzwischen sehr gut in der Lage, Texte zu generieren. Mit einem 

entsprechenden Large Language Model (LLM) kann auch Programmcode generiert werden. Im 

Kontext von Datenbanken sind dies Abfragen in SQL. Es wird hierbei eine natürlichsprachliche 

Aufgabenstellung vorgegeben und zusätzlich das Datenbank-Schema, das die zugrunde 

liegenden Datenbank-Tabellen beschreibt. Das LLM generiert daraus eine Abfrage in der 

Sprache SQL (Natural Language to SQL: NL2SQL). 

In dieser Arbeit wird untersucht, wie gut die Fähigkeit heutiger LLMs hierbei sind. Dabei liegt 

der Fokus auf Auswirkungen, die sich auf die Lehre zum Thema Datenbanken ergeben. Die 

Forschungsfrage lautet also: Welche Qualität haben aktuell automatisch generierte SQL-

Abfragen und welche Konsequenzen ergeben sich daraus für die Lehre? 

Hierbei werden die folgenden beiden Teilaspekte betrachtet: 

1) Korrektheit: Für den Fall, dass es mittels eines LLM möglich ist, stets (d.h. für alle Aufgaben-

stellungen) eine (fast) zu 100% korrekt SQL-Abfrage zu generieren, besteht keine Notwendig-

keit mehr, SQL-Kenntnisse zu lehren. Diese hätten dann allenfalls den Zweck, die generelle 

Funktionsweise von Datenbanksystemen besser zu verstehen. Falls jedoch manchmal oder für 

bestimmte Aufgabenstellungen oder Datenbank-Schemata fehlerhafte SQL-Abfragen generiert 

werden, sind weiterhin SQL-Kenntnisse erforderlich, z.B. zum Überprüfen und Verbessern der 

generierten SQL-Anweisungen. 

2) Prüfungsgestaltung: Wenn LLMs lediglich in der Lage sind, relativ häufig korrekte SQL-

Abfragen zu generieren, dann sollten diese (wie erwähnt) nicht unbesehen verwendet werden. 

Dennoch bieten sie Studierenden die Möglichkeit, ohne ausreichende SQL-Kenntnisse und bei 

geringem Aufwand, Lösungen für Prüfungsaufgaben zu erzeugen. Sind viele der generierten 

SQL-Abfragen korrekt oder beinhalten nur kleinere Fehler, so wird mit dieser Vorgehensweise 

eine recht gute Note erzielt werden. In diesem Fall sollten Prüfungen so gestaltet sein, dass 

durch dieses Betrugspotential kein großer Vorteil gegenüber Studierenden erzielt werden kann, 

die ihre Prüfungsergebnisse selbst erstellen. 

Im nachfolgenden Abschnitt wird wissenschaftliche Literatur zum Thema NL2SQL dargestellt. 

Darauf folgt eine Beschreibung der durchgeführten Experimente und deren Ergebnisse. Diese 

haben das Ziel, die heutige Qualität von NL2SQL in Szenarien zu ermitteln, die bzgl. 

Komplexität des Datenbank-Schemas und Schwierigkeitsgrad üblichen Lehr- und Prüfungs-

inhalten entsprechen. Darauf folgt ein Abschnitt, der Schlussfolgerungen für die Lehre zieht. 

Der Betrag schließt mit einer kurzen Zusammenfassung der wichtigsten Erkenntnisse. 

Literaturanalyse 
Im Gesamtthema der Generierung von SQL-Abfragen, ausgehend von einer in natürlicher 

Sprache vorgegebenen Problemstellung (NL2SQL), findet aktuell viel Forschung statt. Dies ist 

auch daran erkennbar, dass die meisten der nachfolgend dargestellten Veröffentlichungen 

recht neu sind. Bei einigen Arbeiten handelt es sich sogar um Vorab-Veröffentlichungen. Diese 

wurden berücksichtigt, obwohl ihre Qualität noch nicht durch einen Peer-Review-Prozess 

bestätigt ist, um so einen sehr aktuellen Stand der Forschung darstellen zu können. 

Im Folgenden wird zuerst Literatur zu dem Thema NL2SQL im Kontext von Lehre dargestellt. 

Das darauf folgende Unterkapitel beschäftigt sich mit der Bewertung des aktuellen Standes der 
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SQL-Generierung. Schließlich werden noch Ansätze vorgestellt, die das Ziel haben, NL2SQL 

selbst zu verbessern. 

NL2SQL in der Lehre 
Da in dieser Arbeit insbesondere die Auswirkungen von NL2SQL auf die zukünftige Lehre 

untersucht werden sollen, wurde gezielt nach Literatur zu diesem Thema gesucht.1 Dabei 

wurden keine Arbeiten gefunden, die zu erwartende Veränderungen der erforderlichen 

Kompetenzen von Studierenden oder zukünftig (noch) notwendige Lehrinhalte beschreiben. 

Allerdings erwähnen einige Autoren (Dixit and Gajjam, 2024; Ganesan et al., 2024; Hong and 

Storey, 2023; Taipalus and Seppänen, 2020) von nachfolgend dargestellten Arbeiten die 

Wichtigkeit von SQL-Kenntnissen für Studierende, allerdings ohne speziell hierzu eine Studie 

durchgeführt zu haben. Da sich diese Arbeiten jedoch mit dem generellen Thema „KI und 

Datenbanken“ beschäftigen, impliziert dies, dass die Autoren diese Kenntnisse auch weiterhin 

für erforderlich halten. 

Zudem ergab die erwähnte Literatursuche sehr viele Veröffentlichungen, die sich mit dem 

Lernen eines neuronalen Netzes bzw. eines LLMs mittels Trainingsdaten beschäftigen. Diese 

Art des „Lernens“ ist im vorliegenden Kontext nicht relevant, weshalb entsprechende Arbeiten 

im Folgenden nicht dargestellt werden.  

Es wurden Arbeiten zu den nachfolgend beschriebenen Themen identifiziert: 

(Taipalus and Seppänen, 2020) bietet einen ausführlichen Überblick über Arbeiten zum Thema 

SQL-Ausbildung. Die Arbeit enthält jedoch keine Aussagen zu den Themen generative KI, 

NL2SQL oder den durch diese Technologie resultierenden Auswirkungen auf erforderliche 

SQL-Kenntnisse. 

Einige Arbeiten beschäftigen sich mit dem Einsatz von KI oder generell von Softwarelösungen 

beim Unterrichten von SQL:  

(Prakash et al., 2024) verwendet nicht ausschließlich ein Standard-Produkt (wie z.B. ChatGPT) 

zur Generierung von SQL-Abfragen, sondern schlägt hierfür eine speziell entwickelte 

Architektur vor. Mit dieser können sich Studierende SQL-Abfragen generieren lassen. Sie 

können aber auch selbst solche Abfragen erstellen und an das Tool übergeben. Dieses führt 

sie dann aus und analysiert das Ergebnis. Ist letzteres falsch, werden den Studierenden 

Quizfragen zum betroffenen Thema gestellt. 

(Zhang, 2025) nutzt eine KI zur Generierung von SQL-Abfragen im Rahmen einer Lehrveran-

staltung. Dazu erhalten die Studierenden verschiedene Aufgaben (einschließlich dem Ändern 

und Abfragen von Daten mittels SQL), welche sie selbst lösen sollen und zu denen sie sich 

zusätzlich eine Lösung von der KI generieren lassen sollen. Die Studierenden lernen hierbei 

unterschiedliche Vorgehensweisen kennen und können diese kritisch vergleichen. 

(Carr et al., 2023) beschäftigt sich mit der Problemstellung, dass es schwierig ist, von 

Studierenden erstellte SQL-Abfragen automatisch auf Korrektheit zu überprüfen, weil auch 

korrekte SQL-Abfragen sehr stark von der Musterlösung abweichen können. Deshalb wird 

ChatGPT verwendet, um weitere Lösungen für SQL-Abfragen aus den natürlichsprachlichen 

 
1  Hierzu wurde eine Suche in Google-Scholar durchgeführt, wobei nach NL2SQL jeweils in Kombination 

mit education, teaching, student, Lehre oder Unterricht gesucht wurde. Außerdem wurde nach „SQL 
generation“ in Kombination mit einem der letzteren Begriffe gesucht. Schließlich wurde auch noch eine 
Suche nach den Begriffen SQL education artificial intelligence durchgeführt. 
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Aufgabenstellungen zu generieren. Diese werden verwendet, um sie mit den Lösungen der 

Studierenden zu vergleichen. In der Arbeit wurde erkannt, dass diese Vorgehensweise gute 

Ergebnisse liefert, so dass sie in der Lehre eingesetzt werden kann. 

(Hong and Storey, 2023) skizziert einen Ansatz, bei dem ChatGPT, zum Zweck der Lehre, u.a. 

SQL-Statements generieren und den Studierenden die zugrunde liegende Idee erläutern soll. 

Allerdings wird in dieser Arbeit ein erst kürzlich gestartetes Projekt beschrieben, so dass noch 

keine fundierten Erkenntnisse vorliegen. So ist z.B. noch unklar, wie der Erfolg dieser 

Vorgehensweise gemessen werden kann und wie sich die Rolle eines Lehrenden dadurch 

verändert. 

(Dixit and Gajjam, 2024) möchte das Lernen von SQL mittels des KI-Tools AI2SQL.io ver-

bessern. Dieses übernimmt die Rolle eines Tutors, indem es den Studierenden während ihrer 

SQL-Übungen Feedback gibt. Diese Automatisierung erlaubt es (auch bei einer großen 

Gruppengröße), für jede einzelne Übungsaufgabe sofort Feedback z.B. bzgl. Fehlern zu 

geben. Es wird also ein individuelles Feedback möglich und zugleich der erforderliche Zeit-

aufwand für Lehrende reduziert. 

Auch in (Matek et al., 2017) wird eine KI als Tutor eingesetzt. Diese generiert Hinweise auf 

Basis von Lösungen, welche die Studierenden vorheriger Jahrgänge erstellt haben. Die 

aktuellen Studierenden erstellen SQL-Abfragen (für dieselben Übungsaufgaben) und können 

diese wahlweise ausführen oder die KI nach einem Hinweis fragen. Dieser besteht darin, dass 

die aktuelle SQL-Abfrage von der KI angepasst wird. Diesen Hinweis können die Studierenden 

benutzen oder aber auch ignorieren, um so zu einer korrekten Lösung zu gelangen. 

Auch das in (Ganesan et al., 2024) vorgestellte Tool SQLearn prüft von Studierenden erstellte 

SQL-Abfragen auf Korrektheit. Allerdings wird hierfür kein KI-basierter Ansatz verwendet, 

sondern die Ähnlichkeit zu einer Referenz-Abfrage (der Musterlösung) wird automatisch 

bewertet. Eine Einschränkung dieses Ansatzes im Vergleich zu den zuvor vorgestellten KI-

basierten Ansätzen ist deshalb, dass lediglich das Feedback „korrekt“, „falsch“ oder „teilweise 

korrekt“ möglich ist. 

(Steinberger and Wedam, 2025) stellt einen Ansatz vor, der es ermöglicht, mittels einer KI, 

Material für Übungen automatisch zu generieren. Dieses umfasst Datenbanken mit Beispiel-

daten, Übungsaufgaben und Musterlösungen. Das Ziel dieses Ansatzes ist, den Arbeitsauf-

wand für Lehrende zu reduzieren. Einen ähnlichen Ansatz verfolgt (Zhang, 2025). Dort wird 

vorgeschlagen, sich Unterrichtsmaterial, wie z.B. Quizfragen, Übungsaufgaben und Vor-

lesungsfolien von einer KI generieren zu lassen. Generell spart ein solches Vorgehen sicherlich 

Aufwand ein, ist aber recht unabhängig von dem in diesem Bericht behandelten Thema SQL, 

so dass auf andere ähnliche Ansätze hier nicht eingegangen wird. 

(Farinetti and Cagliero, 2025) verwendet kein spezielles Tool, sondern die Studierenden sollten 

direkt mit ChatGPT arbeiten: Sie sollen natürlichsprachliche Aufgabenstellungen entwickeln, 

bei denen ChatGPT fehlerhafte Lösungen für die zugehörige SQL-Abfrage generiert. Außer-

dem erstellen die Studierenden selbst eine korrekte Lösung für die SQL-Abfragen. Ziele dieses 

Experiments sind, dass sich Studierende mit komplizierten Abfragen beschäftigen (da die KI 

bei solchen eher Fehler macht) und sie sich bewusst werden, dass die KI-generierten 

Lösungen durchaus fehlerhaft sein können. Im durchgeführten Experiment waren in letzteren 

sogar mehr Fehler als in den von den Studierenden manuell erstellten Lösungen. Insgesamt 
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soll der Gamification-Aspekt motivationssteigernd wirken, weshalb das Experiment auf diese 

Art und Weise gestaltet wurde. 

(Gaitantzi and Kazanidis, 2025) analysiert 31 Studien zum Thema KI-Unterstützung bei der 

Lehre zum Thema Software-Entwicklung (und hierbei teilweise auch mit dem Thema SQL oder 

zumindest Datenbanken). In den analysierten Studien wurden KI-Tools für die bereits 

genannten Zwecke eingesetzt: zur Generierung von Programmcode (d.h. SQL-Abfragen), als 

automatisierter Tutor und zur Generierung von Lehrmaterial. Die Studien erkennen einen 

Nutzen durch die Verwendung von KI, z.B. weil (auch bei großen Gruppen) ein persönliches 

sowie sofortiges Feedback möglich wird. Allerdings werden auch Probleme der Ansätze 

benannt, wie z.B. Fehler im generierten Inhalt oder eine entstehende Abhängigkeit der 

Studierenden von der KI. 

Analyse der Fähigkeit zur Generierung von SQL-Abfragen 
Im Folgenden werden Arbeiten vorgestellt, welche die heutige Qualität von NL2SQL bewerten. 

Zu diesem Zweck existieren auch einige Benchmarks, die aus einer Sammlung von Beispiel-

tabellen und natürlichsprachlichen Abfragen an diese bestehen. 

Kernaussage von (Floratou et al., 2024) ist, dass das Problem der SQL-Generierung (NL2SQL) 

aktuell noch nicht gelöst ist. Die Arbeit benennt konkrete Probleme hierbei, wie z.B. sehr viele 

Tabellen und Spalten in einer realistischen (d.h. praxisnahen) Datenbank. Hierzu wird als 

Beispiel das Microsoft-interne Data-Warehouse für Finanzdaten mit 632 Tabellen und über 

4000 Spalten (weitere in Views) vorgestellt. Ein solch komplexes Szenario ist für Lehr-Beispiele 

und -Übungen natürlich nicht sinnvoll, zeigt jedoch, dass bei dem Thema noch viele ungelöste 

Probleme bestehen. Zudem werden als weitere Schwierigkeiten in der Praxis genannt, dass 

Abfragen in natürlicher Sprache oft nicht eindeutig sind und Endbenutzer die Semantik (d.h. 

tatsächliche Bedeutung) der Tabellen und deren Spalten nicht kennen, was jedoch für eine 

exakte Formulierung von natürlichsprachlichen Abfragen erforderlich ist. All dies führte in 

dieser Arbeit zu einer durchschnittlichen Korrektheit von nur 22,7% bei der Generierung von 

SQL-Abfragen. 

Ähnliche Probleme werden auch in (Liu et al., 2025) und (Mohammadjafari et al., 2025) 

genannt. 

In (Nascimento et al., 2025) werden Experimente vorgestellt, die mit einer realen Datenbank 

(d.h. aus der Praxis) durchgeführt wurden. Die mit GPT-4 generierten SQL-Abfragen waren 

dabei nur zu 41% korrekt.  

(Liu et al., 2023) untersucht die Qualität generierter SQL-Abfragen für den Fall, dass dem LLM 

im Prompt keine besondere Unterstützung (z.B. durch Beispiele) gegeben wird (Zero-Shot). 

ChatGPT erreichte bei diesen Tests eine Korrektheit von max. 76,6%, wobei diese allerdings 

für andere Arten von Problemstellungen deutlich schlechter war. Das LLM, das bei dem Test 

am besten abgeschnitten hat, erreichte 84,1% Korrektheit. Auffällig war, dass dieses seinen 

besten Korrektheitswert bei anderen Problemstellungen erreichte als ChatGPT. Als generelle 

Erkenntnis lässt sich festhalten, dass keine der LLMs eine nahezu absolute Korrektheit erreicht 

hat. 

(Sun et al., 2023) untersucht die Qualität generierter SQL-Abfragen für verschiedene LLMs, 

wobei auch verschiedene Arten des Abbaus der Prompts berücksichtigt werden. Das beste 

Ergebnis erziele hierbei ChatGPT 3.5, wobei die Korrektheit abhängig vom Prompt-Aufbau im 
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Intervall 31,1% bis 70,9% lag. Eine solche Abhängigkeit wurde auch für andere LLMs fest-

gestellt, wobei bei diesen teilweise ein anderer Prompt-Aufbau optimal war, als bei ChatGPT. 

Auch (Campos et al., 2025) ermittelt mittels Experimenten die Korrektheit von generierten SQL-

Abfragen. Allerdings sind diese sehr einfach strukturiert, da die Datenbank aus nur einer 

einzigen Tabelle besteht (mit jedoch sehr vielen Zeilen). Die ermittelte Korrektheit lag, 

abhängig vom LLM-Modell, zwischen 10% und 96%, d.h. auch bei solch einfachen Abfragen 

lässt sich keine absolute (d.h. sichere) Korrektheit erreichen. Um die Korrektheit zu messen, 

wurde in einem ersten Schritt verglichen, ob die generierte Abfrage exakt der manuell erstellten 

Soll-Abfrage entspricht. Falls dies nicht zutrifft, wurden in einem zweiten Schritt beide Abfragen 

ausgeführt und die Ergebnisse auf Gleichheit geprüft. Ein solches Vorgehen ist natürlich nur 

bei einer ausreichend großen Anzahl von Beispieldaten sinnvoll, weil sonst häufig der Fall 

auftritt, dass die Ergebnisse einer (leicht) falschen Abfrage zufällig identisch sind. 

In (Pornphol and Chittayasothorn, 2023) wird der spezielle Aspekt der Vollständigkeit unter-

sucht: Eine Datenbank-Abfragesprache gilt als vollständig, wenn sie mindestens die Mächtig-

keit der Relationenalgebra aufweist. Als Relationenalgebra wurden die von Codd in seiner 

Originalpublikation vorgeschlagenen 8 Operationen definiert. Anhand von 5 Beispielen wurde 

festgestellt, dass ChatGPT korrekte SQL-Abfragen erstellen kann, welche alle Operationen 

abdecken. Dies lässt die Aussage zu, dass ChatGPT bzgl. der generierten SQL-Abfragen 

vollständig ist. 

Zur Bewertung von generierten SQL-Abfragen existieren verschiedene Benchmarks wie BIRD 

(Li et al., 2023), Spider (Yu et al., 2019), UNITE (Lan et al., 2023), TrustSQL (Lee et al., 2024) 

und TPC-DS (Poess and Floyd, 2000). Letzter umfasst Abfragen, die aus dem Bereich 

„Decision-Making“ stammen und deshalb zu besonders komplexen SQL-Abfragen führen. 

Dieser Benchmark wurde in (Ma et al., 2024) verwendet, um die Abfrage-Generierung von 11 

LLMs zu bewerten. Das Ergebnis zeigt, dass hierbei selbst die besten LLMs lediglich eine 

Korrektheit von 33% erreichen. (Lee et al., 2024) zeigt unter Verwendung des Benchmarks 

TrustSQL, dass heutige NL2SQL-Methoden noch nicht zufriedenstellend funktionieren. 

Die begrenzte Aussagekraft von Benchmarks wird in (Ganti et al., 2024) aufgezeigt, da in 

Protokolldateien enthaltene reale Abfragen eine um ca. 30% geringere Korrektheit aufweisen, 

als die Abfragen der Benchmarks. Als Gründe hierfür wurden Tabellen mit einer großen Anzahl 

an Spalten, nicht eindeutige (aber realistische bzw. praxisnahe) Abfragen, sowie komplexe 

oder verschachtelte resultierende SQL-Abfragen identifiziert.  

(Kim et al., 2020) zeigt für mehrere Benchmarks und unterschiedliche LLMs die begrenzte 

Aussagekraft der erzielten Ergebnisse auf. Die Bewertung der Korrektheit der generierten SQL-

Abfragen muss, wegen der großen Anzahl an ausgeführten Testfällen, normalerweise 

automatisch erfolgen. Hierfür existieren unterschiedliche Methoden, die aber alle zu 

Falschbewertungen führen können. Durch Experimente wird gezeigt, dass sich je nach 

gewählter Methode deutliche Fehler ergeben, d.h. ein konkret angegebener Prozentsatz für die 

Korrektheit sollte nicht „überinterpretiert“ werden. 

Verbesserung von NL2SQL 
Einige Ansätze verfolgen das Ziel, die Qualität von generierten SQL-Abfragen zu verbessern.  

(Shi et al., 2024) bietet hierzu einen Überblick, der u.a. Ansätze zum Prompt-Engineering oder 

Finetuning von Trainingsmethoden, -daten und zur Modellevaluation beinhaltet. Diese Ansätze 
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werden nicht durch Experimente verglichen, so dass keine unmittelbare Aussage zu deren 

Leistungsfähigkeit gemacht wird. Stattdessen wird ein inhaltlicher Vergleich durchgeführt.  

(Liu et al., 2025) bietet ebenfalls einen sehr umfassenden Überblick über Methoden zur SQL-

Generierung, wobei auch detailliert auf technische Aspekte von deren Umsetzung eingegangen 

wird. Dies ist auch der Fokus von (Qin et al., 2022). 

(Zhang et al., 2024) untersucht verschiedener Einzelaufgaben von NL2SQL in Bezug z.B. auf 

Qualität und Ausführungsgeschwindigkeit der generierten SQL-Statements.  

(Gao et al., 2023) betrachtet verschiedene Methoden zum Prompt-Engineering im Kontext der 

SQL-Generierung. Auf dieser Basis wird eine „In-Context-Learning“-Methode für LLMs ent-

wickelt. Hierbei werden in dem Prompt einige Beispiele bereitgestellt, aus denen das LLM lernt. 

Durch Experimente wird bestätigt, dass dies die Korrektheit der generierten SQL-Abfragen 

verbessern kann. 

In (Dong et al., 2023) wird eine Methode vorgestellt, die speziell Schwachstellen von ChatGPT 

bei der Generierung von SQL-Abfragen beheben soll: Das Prompt wird auf eine vorgegebene 

Weise strukturiert und dabei nur für diese Abfrage relevante Tabellen und Spalten angegeben 

bzw. bzgl. ihrer Relevanz bewertet. Zusätzlich werden Hinweise bereitgestellt, z.B. welche 

Spalten nicht benötigt werden, oder dass ein Left Outer Join nur verwendet werden soll, wenn 

tatsächlich ein Outer Join benötigt wird. Schließlich werden mehrere SQL-Abfragen durch 

ChatGPT generiert und ausgeführt, woraufhin die beste ausgewählt wird. 

(Mohammadjafari et al., 2025) bewertet verschiedene NL2SQL-Ansätze bzgl. der Korrektheit 

der erzeugten SQL-Statements und deren Effizienz (d.h. Ausführungsgeschwindigkeit und 

notwendige Ressourcen). Als Ergebnis wird unter anderem die Verwendung von Knowledge-

Graphen empfohlen. Diese definieren die Beziehungen zwischen Entitäten, Tabellen und 

Attributen und helfen bei der Generierung von SQL-Statements. Allerdings ist die Erstellung 

eines solchen Knowledge-Graphen für den Benutzer eine aufwendige Aufgabe. Auch 

(Nascimento et al., 2025) verwendet solche Graphen. Durch Experimente wurde bestätigt, 

dass sich dadurch die Korrektheit der generierten SQL-Abfragen verbessern lässt. Allerdings 

wurde dadurch und durch weitere Maßnahmen lediglich eine Korrektheit von 93% erreicht, d.h. 

eine absolute Korrektheit der generierten Ergebnisse war nicht möglich. 

Bei dem Ansatz von (Biswal et al., 2024) wird aus der Benutzeranfrage eine SQL-Query 

generiert und ausgeführt. Zusätzlich zum Abfrageergebnis wird dann die natürlich-sprachige 

Anfrage verwendet, um eine Antwort für den Benutzer zu generieren. Mit diesem Ansatz lassen 

sich zusätzliche Typen von Benutzeranfragen beantworten. 

(Bhaskar et al., 2023) untersucht Szenarien, in denen die für eine bestimmte Abfrage zu 

generierende SQL-Abfrage nicht eindeutig ist. Dieser Fall kann z.B. aufgrund uneindeutiger 

Namen von Tabellen oder Spalten sowie aufgrund verwirrender Beziehungen auftreten. 

Idealerweise sollten dann alle möglicherweise gewünschten SQL-Abfragen generiert und dem 

Benutzer bereitgestellt werden. Durchgeführte Tests ergaben jedoch, dass dies bei heutigen 

LLMs nicht der Fall ist. Deswegen wurde in dieser Arbeit ein neuartiger Algorithmus entwickelt, 

um diesen Fall besser handhaben zu können. 

Fazit 
Zusammenfassend lässt sich feststellen, dass die Problemstellung der Generierung von SQL-

Abfragen aktuell nicht gelöst ist. Daraus lässt sich schließen, dass es für Mitarbeiter aktuell 



 
 

10

noch notwendig ist, korrekte SQL-Abfragen erstellen zu können. Die teilweise hohe Fehler-

quote bei NL2SQL lässt vermuten, dass dies auch noch längere Zeit gelten wird. Zumindest 

müssen die Mitarbeiter weiterhin fähig sein, die generierten SQL-Abfragen auf ihre Korrektheit 

hin zu überprüfen. Dies erfordert sehr ähnliche SQL-Kenntnisse, wie die Erstellung solcher 

Abfragen. Deswegen ist es weiterhin erforderlich, dass SQL in Lehrveranstaltungen zum 

Thema Datenbanken enthalten ist. Es konnte jedoch keine wissenschaftliche Literatur 

identifiziert werden, die Aussagen zu diesem Thema machen, hier existiert also eine 

Forschungslücke.  

Die Ergebnisse von NL2SQL-Bewertungen mittels Benchmarks fallen sehr unterschiedlich aus. 

Zudem wird in einigen Arbeiten betont, dass deren Aussagekraft begrenzt ist. Eine Bewertung 

von LLMs mittels Benchmarks ist für die vorliegende Forschungsfrage ohnehin wenig hilfreich, 

weil ein bestimmter Prozentsatz für die Korrektheit keine direkten Rückschlüsse auf erforder-

liche Lehrinhalte zulässt. Stattdessen sind solche Benchmarks eher nützlich, um neu ent-

wickelte Ansätze für NL2SQL bewerten und mit existierenden vergleichen zu können. Da eine 

Entwicklung neuer Ansätze nicht unser Ziel ist, werden im Folgenden keine Benchmarks 

verwendet.  

Ansätze zur Verbesserung der generierten SQL-Abfragen, wie z.B. eine spezielle Prompt-

Gestaltung (z.B. In-Context-Learning) oder die Erstellung von Knowledge-Graphen sind zu 

aufwendig, um in einer Vorlesung im Grundstudium behandelt zu werden. Aufgrund des 

Aufwands kann vermutet werden, dass solche Verfahren von Studierenden wohl kaum genutzt 

werden, wenn einige SQL-Abfragen z.B. im Rahmen einer Projektarbeit zu erstellen sind. 

Ähnliches gibt wohl auch für Mitarbeiter in Unternehmen, die spontan eine einzelne oder einige 

wenige SQL-Abfragen, z.B. zur Berechnung von Statistiken, erstellen sollen. Deswegen wird 

auch dieses Thema hier nicht weiter verfolgt. 

Wie bereits beim Thema Benchmarks erwähnt, ist die Verbesserung der internen Funktionalität 

von LLMs bei der Generierung von SQL-Abfragen im Kontext von Lehre ebenfalls nicht 

relevant.  

Deshalb werden im Folgenden nur einige wenige Test mit unterschiedlichen LLMs durch-

geführt, die sich allerdings am Schwierigkeitsgrad von Aufgabenstellungen aus der Lehre 

orientieren. Es ist dabei nicht das Ziel, die Korrektheit dieser LLMs so detailliert zu vergleichen, 

dass sich die Ergebnisse verallgemeinern lassen würden. Stattdessen soll lediglich überprüft 

werden, ob diese tatsächlich keine 100%ige Korrektheit für solch einfache Problemstellungen 

erreichen. 

Aufgabenstellungen für Datenbank-Vorlesungen 
In diesem Abschnitt werden die Ergebnisse einiger Experimente vorgestellt. Hierbei ist das 

Ziel, zu untersuchen, welche Ergebnisse Studierende erzielen werden, wenn sie sich ihre 

Aufgabenstellungen (z.B. aus Projektarbeiten oder Prüfungen) von einer KI generieren lassen. 

Deshalb wurde auch nicht versucht, speziell für SQL geeignete KI-Plattformen oder 

Vorgehensweisen zu verwenden, da diese den Studierenden wohl nicht bekannt sind. 

Stattdessen wurden die folgenden „populären“ (z.B. aus Medien bekannten) LLMs getestet:   

1.   Microsoft Copilot in der von der HNU lizensierten Version. Diese verwendete zum 

Zeitpunkt der Tests ChatGPT in der Version GPT4 
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2.  ChatGPT in der über openai.com öffentlich und kostenlos zugänglichen Version. Dies 

war bei Durchführung der Experimente die Version GPT-4-turbo 

3.   DeepSeek in der Version V3 

Auch der Schwierigkeitsgrad der Aufgabenstellungen und die Komplexität des zugrunde 

liegenden Datenbank-Schemas orientieren sich an dem, was in einer (ersten) Vorlesung zum 

Thema Datenbanken üblicherweise zu erwarten ist. Es sind also keine extrem komplexen 

Abfragen zu erstellen und die Datenbank enthält nicht besonders viele Tabellen und Spalten. 

Dementsprechend generieren die LLMs deutlich bessere Ergebnisse, als die in der Literatur 

erwähnten, z.B. in einem realistischen betrieblichen Umfeld oder bei komplexen Benchmarks 

(vgl. Abschnitt „Literaturanalyse“). 

Verwendete Szenarien 
Wie bereits erwähnt, soll die Komplexität der verwendeten Datenbanken dem entsprechen, 

was in einer Vorlesung zum Thema Datenbanken zu erwarten ist. Im ersten Szenario werden 

Kunden, sowie ihre Adressen, Bestellung, Rechnungen etc. gespeichert. Dieses stammt 

(ebenso wie die Abfragen 1 bis 18, s.u.) aus einer Datenbankvorlesung, welche im 1. bzw. 2. 

Semester in „Wirtschaftsinformatik-artigen“ Studiengängen an der HNU angeboten wird. 

Abb. 1a zeigt das entsprechende Entity-Relationship-Diagramm (um die Bedeutung der Inhalte 

ohne längere textuelle Erklärung verständlich zu machen). Abb. 1b stellt die daraus 

resultierenden Datenbanktabellen als EER-Diagramm in MySQL-Workbench dar 

(Primärschlüssel sind mit einem Schlüssel-Symbol markiert, Fremdschlüssel haben ein rotes 

Symbol). 

Das in diesen Vorlesungen verwendete Szenario enthält keine Entitätstypen, zwischen denen 

es mehrere Beziehungen gibt. Außerdem ist keine (rekursive) Beziehung eines Entitätstyps mit 

sich selbst enthalten. Dies schränkt die Menge an möglichen Aufgabenstellungen ein. Deshalb 

wurden auch Experimente mit einem zweiten Szenario durchgeführt, in dem u.a. Mitarbeiter, 

die Abteilung, in der sie arbeiten bzw. die sie leiten, sowie Standorte gespeichert werden. 

Abb. 2a stellt das Szenario dieser Firmen-Datenbank wieder als Entity-Relationship-Diagramm 

dar und Abb. 2b die Tabellen als EER-Diagramm. Dieses Szenario erlaubt komplexere Auf-

gabenstellungen, in welchen z.B. die Beziehungen „arbeitet in“ und „leitet“ gemeinsam oder so-

gar mehrfach benutzt werden müssen. Außerdem werden Abfragen möglich, welche Rekursion 

erfordern (in SQL eine sog. Common Table Expression: CTE), z.B. um auch indirekte Vorge-

setzte zu berechnen. Solche Aufgabenstellungen und -arten sind für Datenbank-Vorlesungen 

durchaus angemessen, allerdings eher in reinen Informatik-Studiengängen. Eine entsprechen-

de Komplexität von SQL-Abfragen ist auch in einem betrieblichen Umfeld selbst für Berufs-

einsteiger realistisch. 
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Durchführung der Experimente 
Zur Beantwortung der Frage, ob Studierende bzw. Berufseinsteiger aktuell noch eigene SQL-

Kenntnisse benötigen, soll untersucht werden, ob KIs bereits in der Lage sind, SQL-Abfragen 

völlig fehlerfrei zu generieren. Nur wenn dies der Fall ist, kann man sich „quasi blind“ (d.h. ohne 

eigene Kompetenzen zum Thema SQL) auf ein generiertes Ergebnis verlassen. Dement-

sprechend ist irrelevant, ob eine generierte Abfrage für eine bestimmte Problemstellung in 99% 

der Fälle korrekt ist, oder nur in 80% - die Studierenden müssen in beiden Fällen in der Lage 

sein, eine generierte Abfrage zu überprüfen und ggf. selbst eine korrekte Abfrage zu erstellen. 

Sie benötigen also tiefgehende SQL-Kenntnisse, d.h. dieses Thema muss weiterhin in 

Datenbank-Vorlesungen gelehrt werden. 

Da eine solche quantitative Bewertung der Qualität von generierten SQL-Abfragen also nicht 

hilfreich ist, wurde auf einen großen „Stichprobenumfang“ verzichtet: Das bedeutet, für eine 

Aufgabenstellung wurden nicht sehr viele Lösungen automatisch von der KI generiert und 

diese ebenfalls automatisch auf Korrektheit geprüft, um so einen Prozentsatz für die Korrekt-

heit zu ermitteln. Stattdessen wurden die Lösungen (ähnlich wie bei der Korrektur einer 
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Klausur) vom Autor einzeln manuell geprüft. Diese Vorgehensweise wird als „manual matching“ 

bezeichnet. In (Kim et al., 2020) wird festgestellt, dass dies viel Aufwand erfordert, aber 

Falschbewertungen vermeidet, die bei den anderen (automatisch durchführbaren) Bewertungs-

methoden auftreten können. Ein Nachteil ist, dass keine quantitativen Aussagen möglich sind, 

welche aber (wie bereits diskutiert) in unserem Kontext auch nicht erforderlich sind. 

Damit eine KI sinnvolle SQL-Abfragen generieren kann, müssen ihr die Namen der 

zugrundeliegenden Tabellen und deren Spalten bekannt sein. Diese könnten prinzipiell mittels 

eines „Prosa-Textes“ oder einer speziellen Syntax beschrieben werden. Hier wurde jedoch der 

Ansatz gewählt, die CREATE-TABLE-Statements als SQL-Befehle zu verwenden. Gründe 

hierfür sind, dass diese den Studierenden in Projektarbeiten üblicherweise ohnehin vorliegen, 

so dass es naheliegend ist, dass auch sie diese im Prompt verwenden. Außerdem wird diese 

Vorgehensweise vermutlich auch häufig in den Lerndaten der LLMs vorkommen, weil auch hier 

diese SQL-Befehle ohnehin vorhanden sein werden. Ganz konkret wurde deshalb aus den 

bereits erwähnten EER-Diagrammen durch MySQL-Workbench automatisch ein entsprechen-

des Skript generiert. Außerdem wurde davor und danach ein erklärender kurzer Text eingefügt, 

um die Aufgabenstellung im Prompt zu verdeutlichen. Schließlich endet der Prompt mit der 

konkreten Aufgabenstellung. Damit ergibt sich folgender Gesamtaufbau (wobei die CREATE-

TABLE-Statements für die weiteren Tabellen weggelassen wurden, um die Lesbarkeit zu 

erhöhen): 

Eine relationale Datenbank besteht aus folgenden als DDL beschriebenen Tabellen. 

-- ----------------------------------------------------- 

-- Schema KundenDB 

-- ----------------------------------------------------- 

CREATE SCHEMA IF NOT EXISTS `KundenDB` DEFAULT CHARACTER SET utf8 ; 

USE `KundenDB` ; 

-- ----------------------------------------------------- 

-- Table `KundenDB`.`Kunde` 

-- ----------------------------------------------------- 

CREATE TABLE IF NOT EXISTS `KundenDB`.`Kunde` ( 

  `KundenNr` VARCHAR(18) NOT NULL, 

  `Name` VARCHAR(60) NULL, 

  `Umsatz` DECIMAL(12,2) NULL, 

  PRIMARY KEY (`KundenNr`)) 

ENGINE = InnoDB; 

-- ----------------------------------------------------- 

-- Table `KundenDB`.`Bestellung` 

-- ----------------------------------------------------- 

CREATE TABLE  … 

 

Erstelle eine SQL-Anfrage für folgende Problemstellung.  

Übersicht über die Bestellungen mit zugehörigen Detaildaten. 

Auszugebende Ergebnisspalten: BestellNr, Kundenname, Anzahl Bestellpositionen, Preis des teuersten Artikels 
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Der Anhang A enthält eine Liste aller Aufgabenstellungen. Wie im obigen Beispiel sind hierbei 

auch jeweils die auszugebenden Ergebnisspalten angegeben, weil sich diese nicht aus der 

inhaltlichen Beschreibung der Aufgabenstellung ergeben (d.h. die SELECT-Klausel ist 

ansonsten nicht eindeutig definiert). Die Aufgabenstellungen 1 bis 21 verwenden die in Abb. 1 

dargestellte Kunden-Datenbank, ab der Nummer 22 wird die Firmen-Datenbank (vgl. Abb. 2) 

verwendet. Wurde nicht sofort eine korrekte Lösung generiert, so wurde die entsprechende 

Abfrage wiederholt ausgeführt. 

Abb. 3 enthält eine Kurzbeschreibung der zu erwartenden Lösungen, die vollständigen 

Lösungen sind als SQL-Statement in Anhang B dargestellt. Selbstverständlich existieren auch 

andere korrekte Lösungen, wie z.B. die Verwendung einer Sub-Query anstatt einem INNER 

bzw. OUTER JOIN (für Abfrage 13 sind im Anhang B exemplarisch drei unterschiedliche 

Lösungen angegeben). Außerdem stellt Abb. 3 einen Überblick über die Abfrageergebnisse 

dar. Die Beschriftungen „korrekt“ (dunkelgrün) bedeuten hierbei, dass das entsprechende LLM 

sofort eine korrekte Lösung generiert hat. Diese Fälle sind für die weitere Analyse eher 

uninteressant, so dass nicht weiter aus sie eingegangen wird. Alle anderen (d.h. zumindest 

teilweise falschen) Lösungen werden im nächsten Unterabschnitt detailliert diskutiert.  

Im Falle von „noch korrekt“ wurde die Lösung zwar als korrekt gewertet, aber mit Ein-

schränkungen. Dies betrifft z.B. Lösungen, in denen eine bestimmte Tabelle unnötigerweise 
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verwendet wurde oder weil (ohne dass dies so vorgegeben ist) angenommen wurde, dass 

Einträge in der Tabelle IstBefreundetMit (vgl. Abb. 2b) „inhaltlich doppelt“ vorkommen (d.h. 

etwa eine Zeile mit PersonalNr1 = 27 und PersonalNr1 = 88 sowie zusätzlich eine weitere Zeile 

mit PersonalNr1 = 88 und PersonalNr1 = 27 – dies kann in einer Datenbank kann so realisiert 

sein, dies muss aber nicht der Fall sein).  

Als „teilweise“ korrekt wurden z.B. Lösungen gewertet, bei denen sich außer den korrekten 

Ergebniszeilen auch falsche ergeben. So sind in Abfrage 26 die Standorte gefragt, an denen 

Freunde von Peter Müller arbeiten. ChatGPT hat jedoch eine Lösung generiert, bei der außer 

diesen auch der Standort von Peter Müller selbst im Ergebnis enthalten ist. 

Bei Einträgen, die mit „manchmal“ beschriftet sind, hat das LLM zuerst eine falsche Lösung 

generiert. Eine wiederholte Ausführung ergab dann allerdings ein korrektes SQL-Statement. 

Hierbei wurde die Aufgabenstellung teilweise jedoch umformuliert, um die Verständlichkeit zu 

verbessern. 

Bei „falsch“ markierten Einträgen wurden auch im Wiederholungsfall falsche Lösungen 

generiert. 

Auffällige Einzelergebnisse 
 

Im Folgenden wird auf alle nicht „perfekt gelösten“ Fälle eingegangen, d.h. auf diejenigen, die 

in Abb. 3 nicht mit korrekt markiert sind. Außerdem werden einige sonstige Auffälligkeiten der 

von den LLMs generierten Ergebnisse dargestellt. 

Unzulängliche Lösungen 

Die nicht fehlerfreien Lösungen sind im Folgenden geordnet nach LLM dargestellt (und nicht 

nach Aufgabenstellung), da manche Aufgabenstellung nur von einem einzigen LLM falsch 

gelöst wurden und sich zudem die Art der Fehler selbst bei derselben Aufgabenstellung bei 

verschiedenen LLMs stark unterscheidet. 

1. Microsoft Copilot (auf Basis ChatGPT in der Version GPT4) 

Dieses Produkt hat die meisten völlig falschen SQL-Abfragen generiert. Im Folgenden wird 

zusätzlich auf die teilweise oder geringfügig falschen Ergebnisse eingegangen. Um die 

Übersichtlichkeit zu erhöhen ist dabei stets die jeweilige Aufgaben-Nummer (vgl. Abb. 3 sowie 

Anhang A und B) sowie die Aufgabenstellung (in verkürzter Form) angegeben. Einige 

Experimente sind dabei ausführlicher und in verschiedenen Varianten dargestellt, um das 

Verhalten des LLM bei einem unterschiedlich detaillierten Prompt zu erläutern. 

11. Der Kunde (oder die Kunden) mit dem größten Umsatz 

Die ursprüngliche Aufgabenstellung lautete hier „Der Kunde mit dem größten Umsatz“. Hierfür 

wurde die unten dargestellte Lösung generiert. Diese funktioniert zwar, aber nur wenn es exakt 

einen einzigen Kunden mit diesem Maximalumsatz gibt. Das „LIMIT 1“ führt nämlich dazu, dass 

nur eine Zeile ausgegeben wird. Durch die Sortierung ist das dann tatsächlich der Kunde mit 

dem größten Umsatz – oder eben einer dieser Kunden, falls es mehrere solche gibt. 
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SELECT k.KundenNr, k.Name, k.Umsatz 
FROM Kunde k 
ORDER BY k.Umsatz DESC 
LIMIT 1 

Weil die LIMIT-Klausel nicht von allen Produkten unterstützt wird, wurde Copilot im Prompt 

zudem aufgefordert, eine Lösung zu generieren, die auch in Microsoft Access funktioniert. 

Daraufhin entstand die unten dargestellte Lösung (mit TOP 1 anstatt LIMIT 1), welche auch nur 

einen einzigen Kunden ausgibt. 
SELECT TOP 1 Kunde.KundenNr, Kunde.Name, Kunde.Umsatz 
FROM Kunde 
ORDER BY Kunde.Umsatz DESC 

Nach einer Klarstellung der Aufgabenstellung („Der Kunde (oder die Kunden) mit …“, s.o.) 

wurde eine korrekte Lösung generiert. Allerdings ist es für einen Benutzer des LLMs evtl. nicht 

einfach, zu erkennen, dass die Aufgabenstellung nicht ideal formuliert war und deshalb eine 

möglicherweise falsche Lösung entstanden ist.  

16. Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 (kg) bestellt wurde. 

Hierfür wurde folgende Lösung generiert (die Einrückungen wurden nachträglich eingefügt, um 

die einzelnen SQL-Klauseln besser erkennbar zu machen). Die Aufgabenstellung wurde 5 mal 

ausgeführt, wobei jedes Mal folgendes falsche Ergebnis generiert wurde: 

SELECT b.BestellNr, b.Datum, b.KundenNr 

FROM Bestellung b LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr 

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr AND a.Gewicht = 1715 

WHERE a.ArtikelNr IS NULL 

Um diese Aufgabenstellung zu lösen, sollte eigentlich eine Sub-Query verwendet werden (vgl. 

Anhang B). Dies ist hier nicht der Fall. Die Lösung ist aus folgendem Grund falsch: 

Angenommen eine Bestellung hat 2 Bestellpositionen (d.h. 2 Zeilen in der Tabelle BestellPos) 

hat, mit den Artikeln A2 (mit 1715 kg) und A3 (mit einem anderen Gewicht). Wegen dem Artikel 

A2 mit 1715 kg sollte diese Bestellung nicht im Ergebnis sein. Allerdings findet die Bestell-

position mit dem Artikel A3 keinen Join-Partner in der Tabelle Artikel, weil die Join-Bedingung 

„a.Gewicht = 1715“ nicht erfüllt ist. Wegen dem OUTER JOIN werden die Felder aus der 

Tabelle Artikel mit NULL-Werten aufgefüllt, so dass die WHERE-Klausel erfüllt ist und diese 

Bestellung fälschlicherweise ausgegeben wird. 

a. Variante: Bestellungen, in denen kein Artikel mit einem Gewicht über 1715 (kg) bestellt 

wurde 

Wird die Aufgabenstellung so modifiziert, dass (anstatt Artikel mit 1715 kg) solche mit einem 

größeren Gewicht nicht bestellt werden dürfen, dann wird eine korrekte Lösung generiert. Dies 

ist erstaunlich, weil sich der SQL-Befehl nur durch ein > anstatt einem = unterscheidet.  

b. Zusätzliche Erklärung: Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 

(kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch ein Artikel 

mit einem anderen Gewicht als 1715 bestellt wurde. 

Diese Erklärung beschreibt den Fehlerfall der ursprünglichen Lösung. Trotzdem generiert 

dieses LLM dieselbe falsche SQL-Abfrage. 

c. Zusätzliche Erklärung und Beispiel: Bestellungen, in denen kein Artikel mit einem Gewicht 

von 1715 (kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch 
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ein Artikel mit einem anderen Gewicht als 1715 bestellt wurde. Beispielsweise gehört eine 

Bestellung für einen Artikel mit 1715 kg und einem Artikel mit 2000 kg nicht in das Ergebnis. 

Hier wurde eine korrekte Lösung generiert. Jedoch erfordert sowohl die Erklärung als auch das 

Beispiel große Kompetenzen bzgl. Erkennung des Fehlers und eines konkreten Problemfalls. 

Es sind also sehr gute SQL-Kenntnisse erforderlich (vermutlich ist es einfacher, die SQL-

Anweisung selbst zu erstellen). 

d. Weiteres erklärendes Beispiel: Bestellungen, in denen kein Artikel mit einem Gewicht von 

1715 (kg) bestellt wurde. Achtung: Das ist etwas anderes als Bestellungen, in denen auch ein 

Artikel mit einem anderen Gewicht als 1715 bestellt wurde. Beispielsweise gehört eine 

Bestellung für einen Artikel mit 1715 kg und einem Artikel mit 2000 kg nicht in das Ergebnis. 

Eine Bestellung ganz ohne Bestellpositionen (und damit Artikel) gehört hingegen schon in das 

Ergebnis. 

Daraufhin wurde eine korrekte Lösung generiert, die aber seltsamerweise ein GROUP BY und 

HAVING verwendet, sowie ein nicht von allen Datenbank-Management-Systemen unterstütztes 

CASE: 

SELECT b.BestellNr, b.Datum, b.KundenNr 

FROM Bestellung b LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr 

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr 

GROUP BY b.BestellNr, b.Datum, b.KundenNr 

HAVING SUM(CASE WHEN a.Gewicht = 1715 THEN 1 ELSE 0 END) = 0 

18. Kunden, die die Zahlungsart Kreditkarte nie verwendet haben. 

Dies führte zu einer falschen Lösung, weil die Bezeichnung Kreditkarte als ZahlArtNr 

interpretiert wurde. Um die Aufgabenstellung eindeutiger zu machen, wurde sie wie folgt 

abgewandelt: 

Kunden, die die Zahlungsart mit der Bezeichnung Kreditkarte nie verwendet haben.  

Eine korrekte Lösung sollte wieder eine Sub-Query verwenden. Die generierte Lösung war 

falsch und hat wieder denselben Aufbau wie bei Aufgabenstellung 16: 

SELECT k.KundenNr, k.Name 

FROM Kunde k LEFT JOIN Verwendet v  

ON k.KundenNr = v.KundenNr AND v.ZahlArtNr = 'Kreditkarte' 

WHERE v.KundenNr IS NULL 

Es wurde wieder untersucht, inwieweit zusätzliche Erklärungen und Beispiele hilfreich sind: Es 

genügte bereits eine Erklärung (analog 16b), um eine korrekte Lösung zu erhalten. Dasselbe 

gilt für Erklärung und Beispiel (analog 16c). Wenn zusätzlich ein dem Fall 16d entsprechender 

Erklärungstext angegeben wird (… Ein Kunde ganz ohne Zahlungsarten hingegen schon), 

dann entsteht wieder die oben dargestellte falsche Lösung. Diese Vorgehensweise beim 

Erstellen eines Prompt ist also nicht zuverlässig. 

19. Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben. 

Die Aufgabenstellung ist ähnlich zu Nr. 16, wobei jedoch ein zusätzlicher Join mit der Tabelle 

Bestellung in der Sub-Query erforderlich ist. Außerdem muss die Tabelle Kunde verwendet 

werden, weil diese die auszugebenden Spalten enthält. Diese Tabelle ist in der generierten 

Lösung zwar vorhanden, aber ansonsten wurde derselbe Fehler wie bei Nr. 16 gemacht: 
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SELECT k.KundenNr, k.Name, k.Umsatz 

FROM Kunde k LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr 

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr 

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr AND a.Gewicht = 1715 

WHERE a.ArtikelNr IS NULL 

20. Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) 

bestellt haben. 

Auch dies folgt demselben Muster, wobei zusätzlich ein Join in der Haupt-Query nötig ist (mit 

der Tabelle Adresse). Die generierte Lösung enthält wieder denselben Fehler: 

SELECT DISTINCT a.Strasse, a.HausNr, a.PLZ, a.Ort 

FROM KundenDB.Adresse a JOIN KundenDB.Kunde k ON a.KundenNr = k.KundenNr 

LEFT JOIN KundenDB.Bestellung b ON k.KundenNr = b.KundenNr 

LEFT JOIN KundenDB.BestellPos bp ON b.BestellNr = bp.BestellNr 

LEFT JOIN KundenDB.Artikel ar ON bp.ArtikelNr = ar.ArtikelNr AND ar.Gewicht = 1715 

WHERE ar.ArtikelNr IS NULL 

Auch die Aufgabenstellung 21 ist hierzu sehr ähnlich, wobei sogar 2 Join-Operationen in der 

Haupt-Query nötig sind. Erstaunlicherweise wurde hierfür jedoch eine korrekte Lösung 

generiert. 

25. Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten 

Hier wurde die nachfolgend angegebene Lösung generiert. Diese ist nur dann korrekt, wenn 

alle Freundschaftsbeziehungen „doppelt“ in der Tabelle IstBefreundetMit gespeichert sind. Das 

bedeutet, dass außer einer Zeile mit PersonalNr1 = X und PersonalNr2 = Y zusätzlich eine 

Zeile mit PersonalNr1 = Y und PersonalNr2 = X vorhanden sein muss. Es ist zwar möglich, 

diese Tabelle so zu befüllen, das muss aber nicht der Fall sein und war bei dem im Prompt 

abgegebenen Schema auch nicht so vorgegeben. Deswegen wird diese Lösung lediglich als 

„noch korrekt“ gewertet. 

SELECT DISTINCT A.AbteilungsNr, A.Bezeichnung 

FROM Abteilung A JOIN Mitarbeiter M ON A.AbteilungsNr = M.ArbeitetInAbteilungsNr 

JOIN IstBefreundetMit B ON M.PersonalNr = B.PersonalNr2 

JOIN Mitarbeiter P ON B.PersonalNr1 = P.PersonalNr 

WHERE P.Vorname = 'Peter' AND P.Nachname = 'Müller' 

27. Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Müller 

Die hierfür generierte (nachfolgend dargestellte) Lösung funktioniert nicht. Korrekt realisiert ist, 

dass m (Peter Müller) mit m1 befreundet ist. Die (letzten beiden) Join-Bedingungen 

m1.PersonalNr = a.AbteilungsleiterPersonalNr und a.AbteilungsleiterPersonalNr = 

m2.PersonalNr sorgen zusammen aber dafür, dass m1 und m2 identisch sind. Korrekt wäre, 

die Abteilung zu ermitteln, in der m2 arbeitet (nicht: leitet). Deshalb müsste die erste dieser 

Bedingungen m1.ArbeitetInAbteilungsNr = a.AbteilungsNr lauten (vgl. Anhang B). 
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SELECT DISTINCT a.AbteilungsleiterPersonalNr AS PersonalNr, m2.Vorname, m2.Nachname 

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit f  

ON m.PersonalNr = f.PersonalNr1 OR m.PersonalNr = f.PersonalNr2 

    JOIN AbteilungsDB.Mitarbeiter m1  

ON (m1.PersonalNr = f.PersonalNr1 OR m1.PersonalNr = f.PersonalNr2)  

AND m1.PersonalNr != m.PersonalNr 

    JOIN AbteilungsDB.Abteilung a ON m1.PersonalNr = a.AbteilungsleiterPersonalNr 

    JOIN AbteilungsDB.Mitarbeiter m2 ON a.AbteilungsleiterPersonalNr = m2.PersonalNr 

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller' 

28. Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Müller 

Die generierte Lösung ist nicht falsch. Sie ist allerdings sehr seltsam, weil nach dem Join mit 

der Tabelle Mitarbeiter p keine Join-Bedingung folgt, die eine Verknüpfung mit einer anderen 

Tabelle realisiert. Zudem wird die im Join davor angegebene Tabelle Abteilung a ansonsten 

überhaupt nicht verwendet, so dass dieser Join unnötig ist und ersatzlos gestrichen werden 

kann. 

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM Mitarbeiter m JOIN Abteilung a ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr 

JOIN Mitarbeiter p ON p.Nachname = 'Müller' AND p.Vorname = 'Peter' 

JOIN IstBefreundetMit f ON (f.PersonalNr1 = p.PersonalNr  

OR f.PersonalNr2 = p.PersonalNr) 

JOIN Mitarbeiter mf ON (mf.PersonalNr = f.PersonalNr1  

OR mf.PersonalNr = f.PersonalNr2) AND mf.PersonalNr != p.PersonalNr 

WHERE m.ArbeitetInAbteilungsNr = mf.ArbeitetInAbteilungsNr 

30. Die Abteilungen, in denen Vorgesetzte von Peter Müller arbeiten, auch indirekt Vorgesetzte 

Hier wurde die unten dargestellte, inhaltlich falsche Abfrage generiert. Der rekursive Teil 

ermittelt (korrekt) die Personalnummern von Mitarbeitern und ihren Vorgesetzten. Der Teil 

danach ist jedoch falsch, weil wegen der Join-Bedingung a.AbteilungsleiterPersonalNr = 

v.PersonalNr Abteilungen ausgegeben, die von einem (indirekten) Vorgesetzten von Peter 

Müller geleitet werden. Es sind aber Abteilungen gesucht, in denen diese Personen arbeiten. 

Hierzu müsste also das Attribut a.ArbeitetInAbteilungsNr verwendet werden. Damit dieses 

verwendbar wird, wäre ein weiterer Join (mit der Tabelle Mitarbeiter) notwendig, d.h. dieser 

fehlt in der vorgeschlagenen Lösung.  

Zudem ist in v.PersonalNr auch Peter Müller selbst enthalten Es selbst ist in der Ausgabe aber 

nicht zu berücksichtigen, sondern nur seine Vorgesetzten. Deshalb darf diese Spalte in der 

letzten Join-Bedingung nicht verwendet werden, sondern es muss mit VorgesetzterPersonalNr 

verglichen werden (für den Join mit der o.g. Tabelle Mitarbeiter). 

Dieser Fehler ist (insb. für eher unerfahrene Studierende) vermutlich schwer zu finden, weil die 

Abfrage syntaktisch korrekt ist und auf den ersten Blick plausibel klingt. Es ist aber etwas 

anderes, dass eine Person (auch wenn sie Vorgesetzter ist) in einer Abteilung arbeitet, als 

wenn diese Person sie leitet.  
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WITH RECURSIVE Vorgesetzte AS ( 

SELECT m.PersonalNr, m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m 

WHERE m.Nachname = 'Müller' AND m.Vorname = 'Peter' 

UNION 

SELECT m.PersonalNr, m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m INNER JOIN Vorgesetzte v  

ON m.PersonalNr = v.VorgesetzterPersonalNr 

) 

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung 

FROM AbteilungsDB.Abteilung a JOIN Vorgesetzte v  

ON a.AbteilungsleiterPersonalNr = v.PersonalNr 

31. Die Abteilungen und die Standorte an denen Vorgesetzte von Peter Müller arbeiten, auch 

indirekt Vorgesetzte 

Hier wurde derselbe Fehler gemacht, wie bei der vorherigen Aufgabenstellung, d.h. die letzte 

Join-Bedingung enthält wieder beide bereits beschriebenen Fehler. 

WITH RECURSIVE Vorgesetzte AS ( 

SELECT m.PersonalNr, m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m 

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller' 

UNION ALL 

SELECT m.PersonalNr, m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m 

INNER JOIN Vorgesetzte v ON m.PersonalNr = v.VorgesetzterPersonalNr 

) 

SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname 

FROM AbteilungsDB.Abteilung a INNER JOIN AbteilungsDB.Standort s  

ON a.StandortNr = s.StandortNr 

INNER JOIN Vorgesetzte v ON a.AbteilungsleiterPersonalNr = v.PersonalNr 

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind 

Die generierte Lösung enthält einen eher kleinen Fehler: Der Mitarbeiter m ist mit pm 

befreundet (dem Vorgesetzten von Peter Müller). Jedoch kann auch m = pm sein (z.B. falls bei 

beiden OR-Bedingungen die PersonalNr1 verwendet wird). Also werden nicht nur Freunde des 

Vorgesetzten, sondern auch dieser Vorgesetzte selbst ausgegeben. In der SQL-Abfrage fehlt 

die im Anhang B mit AND verknüpfte Bedingung, die dafür sorgt, dass die PersonalNr von m 

und pm unterschiedlich sind. 

SELECT DISTINCT a.AbteilungsleiterPersonalNr AS PersonalNr, m.Vorname, m.Nachname 

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m  

ON a.AbteilungsleiterPersonalNr = m.PersonalNr 

JOIN AbteilungsDB.IstBefreundetMit ib ON m.PersonalNr = ib.PersonalNr1  

OR m.PersonalNr = ib.PersonalNr2 

JOIN AbteilungsDB.Mitarbeiter pm ON (ib.PersonalNr1 = pm.PersonalNr  

OR ib.PersonalNr2 = pm.PersonalNr) 
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WHERE pm.PersonalNr IN ( 

        SELECT VorgesetzterPersonalNr  

        FROM AbteilungsDB.Mitarbeiter  

        WHERE Vorname = 'Peter' AND Nachname = 'Müller' ) 

33. Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Müller befreundet sind 

Hier ist die generierte Lösung falsch: Wegen 1. Join-Bedingung ist a1 die Abteilung, die Peter 

Müller (m1) leitet. Dass er Abteilungsleiter ist, wird in der Aufgabenstellung jedoch gar nicht 

gefordert, sondern es geht um die Abteilung, in der er arbeitet. Deshalb müsste (anstatt der 

PersonalNr) die AbteilungsNr in der Join-Bedingung verwendet werden, also die Bedingung 

m1.ArbeitetInAbteilungsNr = a1.AbteilungsNr. 

SELECT DISTINCT m2.PersonalNr, m2.Vorname, m2.Nachname 

FROM AbteilungsDB.Mitarbeiter m1 JOIN AbteilungsDB.Abteilung a1  

ON m1.PersonalNr = a1.AbteilungsleiterPersonalNr 

JOIN AbteilungsDB.IstBefreundetMit b  

ON a1.AbteilungsleiterPersonalNr = b.PersonalNr1  

OR a1.AbteilungsleiterPersonalNr = b.PersonalNr2 

JOIN AbteilungsDB.Abteilung a2  

ON (b.PersonalNr1 = a2.AbteilungsleiterPersonalNr  

OR b.PersonalNr2 = a2.AbteilungsleiterPersonalNr)  

AND a2.AbteilungsleiterPersonalNr != a1.AbteilungsleiterPersonalNr 

JOIN AbteilungsDB.Mitarbeiter m2 ON a2.AbteilungsleiterPersonalNr = m2.PersonalNr 

WHERE m1.Vorname = 'Peter' AND m1.Nachname = 'Müller' 

2. ChatGPT (GPT-4-turbo) 

Im Folgenden sind die nicht vollständig korrekt generierten SQL-Abfragen von ChatGPT 

dargestellt. Dabei ist zu beachten, dass mit GPT-4-turbo eine andere Version des LLMs 

zugrunde liegt als bei den zuvor dargestellten Lösungen von Microsoft Copilot. 

4. Alle Bestellungen sortiert nach BestellNr, aber nur Bestellungen, für die (noch) keine 

Rechnung existiert 

Hier wurde die die Sortierung vergessen:  

SELECT b.BestellNr, b.Datum AS 'Bestell-Datum' 

FROM Bestellung b LEFT JOIN Rechnung r ON b.BestellNr = r.BestellNr 

WHERE r.RechnNr IS NULL 

Bei der Wiederholung des Tests wurde jedoch eine korrekte Lösung generiert, d.h. die 

ORDER-BY-Klausel ist vorhanden. 

11. Der Kunde (oder die Kunden) mit dem größten Umsatz 

Ebenso wie Microsoft Copilot wurde mit der ursprünglichen Aufgabenstellung („Der Kunde mit 

…“) eine Lösung generiert, die nur funktioniert, wenn es nur einen einzigen solchen Kunden 

gibt. Grund ist wieder das „LIMIT 1“, aufgrund dessen nur eine Zeile ausgegeben wird.  

SELECT k.KundenNr, k.Name, k.Umsatz 

FROM Kunde k 

ORDER BY k.Umsatz DESC 

LIMIT 1 

Die Klarstellung der Aufgabenstellung führte auch hier zu einer korrekten Lösung. 
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21. Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) 

bestellt haben 

Die nachfolgend dargestellte generierte Lösung enthält in der Sub-Query einen unnötigen Join 

mit der Tabelle Kunde, weil das zurückgegebene Attribut KundenNr ist auch in der Tabelle 

Bestellung enthalten ist.  

In der Haupt-Query werden Joins mit den Tabellen Bestellung, BestellPos und Artikel 

durchgeführt. Dies führt zu einem unvollständigen (d.h. falschen) Ergebnis, weil dann Kunden 

(und damit deren Zahlungsarten) nicht berücksichtigt werden, denen gar keine Bestellung, 

BestellPos oder Artikel zugeordnet sind. Die Zahlungsarten solcher Kunden gehören jedoch in 

das Ergebnis, weil z.B. Kunden ohne eine Bestellung sicher keinen Artikel mit 1715 kg Gewicht 

bestellt haben. 

SELECT DISTINCT Z.ZahlArtNr, Z.Bezeichnung 

FROM KundenDB.Zahlungsart Z JOIN KundenDB.Verwendet V ON Z.ZahlArtNr = V.ZahlArtNr 

JOIN KundenDB.Kunde K ON V.KundenNr = K.KundenNr 

JOIN KundenDB.Bestellung B ON K.KundenNr = B.KundenNr 

JOIN KundenDB.BestellPos BP ON B.BestellNr = BP.BestellNr 

JOIN KundenDB.Artikel A ON BP.ArtikelNr = A.ArtikelNr 

WHERE K.KundenNr NOT IN ( 

SELECT DISTINCT K2.KundenNr 

FROM KundenDB.Kunde K2 JOIN KundenDB.Bestellung B2  

ON K2.KundenNr = B2.KundenNr 

JOIN KundenDB.BestellPos BP2 ON B2.BestellNr = BP2.BestellNr 

JOIN KundenDB.Artikel A2 ON BP2.ArtikelNr = A2.ArtikelNr 

WHERE A2.Gewicht = 1715 ) 

a. Zusätzliche Erklärung: Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem 

Gewicht von 1715 (kg) bestellt haben. Achtung: Zahlungsarten von Kunden, die gar keine 

Bestellung oder eine Bestellung ohne Bestellpositionen haben, gehören in das Ergebnis, weil 

diese Kunden dann ja keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben.  

Ebenso wie beim Copilot wurde getestet, ob der eben beschriebene Fehler durch obigen 

Erklärungstext vermieden werden kann. Dies führte jedoch zu der nachfolgend dargestellten 

falschen SQL-Abfrage. Diese berücksichtigt auch Kunden, die irgendeinen Artikel mit einem 

anderen Gewicht als 1715 bestellt haben, auch wenn sie zusätzlich einen Artikel mit 1715 kg 

bestellt haben – also eigentlich explizit aus dem Ergebnis ausgeschlossen werden sollen. 

SELECT DISTINCT z.ZahlArtNr, z.Bezeichnung 

FROM Zahlungsart z JOIN Verwendet v ON z.ZahlArtNr = v.ZahlArtNr 

LEFT JOIN Kunde k ON v.KundenNr = k.KundenNr 

LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr 

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr 

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr 

WHERE (a.Gewicht IS NULL OR a.Gewicht <> 1715) 

b. Zusätzliche Erklärung und Beispiel: Die Zahlungsarten derjenigen Kunden, die keinen 

Artikel mit einem Gewicht von 1715 (kg) bestellt haben. Achtung: Zahlungsarten von Kunden, 

die gar keine Bestellung oder eine Bestellung ohne Bestellpositionen haben, gehören in das 

Ergebnis, weil diese Kunden dann ja keinen Artikel mit einem Gewicht von 1715 (kg) bestellt 
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haben. Kunden, die Artikel mit einem anderen Gewicht und zusätzlich Artikel mit 1715 (kg) 

bestellt haben, dürfen nicht berücksichtigt werden.  

Damit wurde ein korrektes Ergebnis generiert. Jedoch muss wieder festgestellt werden, das die 

Fehlererkennung und geeignete Formulierung von Erklärungen und Beispielen schwierig ist 

und unerfahrene Anwender vermutlich überfordert. 

SELECT DISTINCT z.ZahlArtNr, z.Bezeichnung 

FROM Zahlungsart z JOIN Verwendet v ON z.ZahlArtNr = v.ZahlArtNr 

JOIN Kunde k ON v.KundenNr = k.KundenNr 

WHERE k.KundenNr NOT IN ( 

SELECT DISTINCT b.KundenNr 

FROM Bestellung b JOIN BestellPos bp ON b.BestellNr = bp.BestellNr 

JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr 

WHERE a.Gewicht = 1715 ) 

24. Alle Abteilungen, die Freunde des Mitarbeiters Peter Müller leiten 

Die generierte Lösung ist wegen der letzten Join-Bedingung A.AbteilungsleiterPersonalNr = 

M.PersonalNr falsch: Aufgrund der WHERE-Klausel ist M = Peter Müller. Durch die erwähnte 

Join-Bedingung ist er Abteilungsleiter der Abteilung a. Es wird also die von ihm geleitete 

Abteilung ausgegeben – Aufgabenstellung war jedoch, Abteilungen zu ermitteln, die seine 

Freunde leiten. Für eine korrekte Lösung hätte in der letzten Join-Bedingung (anstatt M.) 

IFM.PersonalNr1/2 verwendet werden müssen. 

SELECT A.AbteilungsNr, A.Bezeichnung 

FROM AbteilungsDB.Mitarbeiter M JOIN AbteilungsDB.IstBefreundetMit IFM  

ON M.PersonalNr = IFM.PersonalNr1 OR M.PersonalNr = IFM.PersonalNr2 

JOIN AbteilungsDB.Abteilung A ON A.AbteilungsleiterPersonalNr = M.PersonalNr 

WHERE (M.Vorname = 'Peter' AND M.Nachname = 'Müller') 

Die Wiederholung des Tests führte zu einer fast richtigen Lösung. Diese unten dargestellte 

SQL-Abfrage führt 2 Joins mit der Tabelle Mitarbeiter durch (als m und p). Dies ist nicht falsch, 

aber unnötig (vgl. Anhang B).  

In den Join-Bedingungen fehlt jedoch eine Bedingung, die verhindert, dass Peter Müller (p) als 

sein eigener Freund (m, der Abteilungsleiter) betrachtet wird (z.B., weil in beiden mit OR 

verknüpften Join-Bedingungen ibm.PersonalNr1 verwendet wird). Die Lösung ist also nur 

teilweise korrekt. 

SELECT a.AbteilungsNr, a.Bezeichnung 

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m  

ON a.AbteilungsleiterPersonalNr = m.PersonalNr 

JOIN AbteilungsDB.IstBefreundetMit ibm ON (m.PersonalNr = ibm.PersonalNr1  

OR m.PersonalNr = ibm.PersonalNr2) 

JOIN AbteilungsDB.Mitarbeiter p ON (ibm.PersonalNr1 = p.PersonalNr  

OR ibm.PersonalNr2 = p.PersonalNr) 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

25. Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten 

Hier wurde derselbe Fehler gemacht, wie bei der vorherigen Aufgabe. d.h. Peter Müller erfüllt 

selbst die Join-Bedingungen: Da eine entsprechende Bedingung fehlt (vgl. AND in Anhang B), 
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kann er außer p auch m sein, so dass fälschlicherweise auch die Abteilung ausgegeben wird, 

in der Peter Müller selbst arbeitet – auch wenn dort kein Freund von ihm arbeitet. 

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung 

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m  

ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr 

JOIN AbteilungsDB.IstBefreundetMit bf ON (bf.PersonalNr1 = m.PersonalNr  

OR bf.PersonalNr2 = m.PersonalNr) 

JOIN AbteilungsDB.Mitarbeiter p ON (p.PersonalNr = bf.PersonalNr1  

OR p.PersonalNr = bf.PersonalNr2) 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

26. Die Standorte von Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten 

Hier sind die Join-Bedingungen unsinnig. Es wird zwar ein Join der Tabelle m (Peter Müller) mit 

IstBefreundetMit (ibm) durchgeführt, aber ibm ansonsten nicht verwendet. Stattdessen bewirkt 

die Bedingung a.AbteilungsNr = m.ArbeitetInAbteilungsNr, dass a die Abteilung ist, in der Peter 

Müller arbeitet, so dass sein eigener Standort ausgegeben wird. 

SELECT DISTINCT s.StandortNr, s.Ortsname 

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm  

ON m.PersonalNr = ibm.PersonalNr1  

OR m.PersonalNr = ibm.PersonalNr2 

JOIN AbteilungsDB.Abteilung a ON (a.AbteilungsNr = m.ArbeitetInAbteilungsNr) 

JOIN AbteilungsDB.Standort s ON s.StandortNr = a.StandortNr 

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller' 

Die Wiederholung des Tests führte zu einer korrekten Lösung. Wie nachfolgend dargestellt, 

enthält diese jedoch ein CASE-Konstrukt, das nicht von allen Datenbanksystemen unterstützt 

wird. 

SELECT DISTINCT s.StandortNr, s.Ortsname 

FROM Mitarbeiter peter JOIN IstBefreundetMit f  

ON peter.PersonalNr = f.PersonalNr1 OR peter.PersonalNr = f.PersonalNr2 

JOIN Mitarbeiter freund  

ON freund.PersonalNr = CASE  

                           WHEN f.PersonalNr1 = peter.PersonalNr THEN f.PersonalNr2 

                           ELSE f.PersonalNr1 

                          END 

JOIN Abteilung a ON freund.ArbeitetInAbteilungsNr = a.AbteilungsNr 

JOIN Standort s ON a.StandortNr = s.StandortNr 

WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Müller' 

28. Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Müller 

Die generierte Abfrage ist falsch, weil der Mitarbeiter m ausgegeben wird. Dieser ist wegen den 

ersten beiden Join-Bedingungen mit Peter Müller (pm) befreundet. Es sollen aber nicht seine 

Freunde ausgegeben werden, sondern deren Abteilungskollegen.  

Die 1. Bedingung in der WHERE-Klausel führt dazu, dass pm = Peter Müller ist. Eine weitere 

WHERE-Klausel in der Sub-Query mit derselben Bedingung ist unsinnig. 
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SELECT m.PersonalNr, m.Vorname, m.Nachname 

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm  

ON m.PersonalNr = ibm.PersonalNr1 OR m.PersonalNr = ibm.PersonalNr2 

JOIN AbteilungsDB.Mitarbeiter pm  

ON (ibm.PersonalNr1 = pm.PersonalNr OR ibm.PersonalNr2 = pm.PersonalNr)  

WHERE pm.Vorname = 'Peter' AND pm.Nachname = 'Müller' 

AND m.ArbeitetInAbteilungsNr = ( SELECT ArbeitenInAbteilungsNr 

                                     FROM AbteilungsDB.Mitarbeiter  

                                     WHERE Vorname = 'Peter' AND Nachname = 'Müller') 

AND m.PersonalNr != pm.PersonalNr 

Eine wiederholte Ausführung führte zu einer anderen falschen Lösung: Der ausgegebene 

Mitarbeiter m ist wegen der ersten beiden Join-Bedingungen mit peter (d.h. Peter Müller) 

befreundet. Die Aufgabenstellung „derselben Abteilung“ wird also nicht erfüllt, der letzte Join 

ändert daran nichts, weil die Tabelle Abteilung (a) ansonsten nicht verwendet wird. 

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.IstBefreundetMit ibm  

ON m.PersonalNr = ibm.PersonalNr1 OR m.PersonalNr = ibm.PersonalNr2 

JOIN AbteilungsDB.Mitarbeiter peter ON (ibm.PersonalNr1 = peter.PersonalNr  

OR ibm.PersonalNr2 = peter.PersonalNr) 

JOIN AbteilungsDB.Abteilung a ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr 

WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Müller'  

AND m.PersonalNr != peter.PersonalNr 

29. Alle Vorgesetzten von Peter Müller, auch indirekt Vorgesetzte 

Die generierte Lösung enthält mehrere kleinere Fehler. So ist REKURSIVE mit K statt C 

geschrieben, weswegen die SQL-Abfrage syntaktisch falsch und damit nicht ausführbar ist.  

Ein inhaltlicher Fehler ist, dass im 1. und 2. SELECT die Spalte VorgesetzterPersonalNr fehlt. 

Deshalb ist die 1. Join-Bedingung falsch, weil es die Spalte VorgesetzterPersonalNr in der 

Tabelle Vorgesetzte (v) gar nicht gibt.  

Schließlich ist die Sub-Query eine sehr umständliche Lösung. Es wäre viel einfacher, Peter 

Müller direkt aufgrund seines Namens in der Tabelle v auszuschließen.  

WITH REKURSIVE Vorgesetzte AS ( 

-- Basis: Peter Müller ist der Startpunkt 

SELECT m.PersonalNr, m.Vorname, m.Nachname 

FROM AbteilungsDB.Mitarbeiter m 

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller' 

   UNION ALL 

-- Rekursion: Vorgesetzte der gefundenen Personen 

SELECT m.PersonalNr, m.Vorname, m.Nachname 

FROM AbteilungsDB.Mitarbeiter m JOIN Vorgesetzte v  

ON m.PersonalNr = v.VorgesetzterPersonalNr 

) 
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-- Auswahl der endgültigen Vorgesetzten 

SELECT DISTINCT v.PersonalNr, v.Vorname, v.Nachname 

FROM Vorgesetzte v 

WHERE v.PersonalNr != ( SELECT PersonalNr  

FROM AbteilungsDB.Mitarbeiter  

WHERE Vorname = 'Peter' AND Nachname = 'Müller') 

Eine Wiederholung des Tests führte zu folgender korrekten Lösung: 

WITH RECURSIVE Vorgesetzte AS ( 

-- Start mit Peter Müller, um seine direkten Vorgesetzten zu finden 

SELECT PersonalNr, Vorname, Nachname, VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter 

WHERE Vorname = 'Peter' AND Nachname = 'Müller' 

     UNION ALL 

-- Rekursive Abfrage: alle Vorgesetzten der bereits gefundenen Vorgesetzten 

SELECT m.PersonalNr, m.Vorname, m.Nachname, m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m INNER JOIN Vorgesetzte v  

ON m.PersonalNr = v.VorgesetzterPersonalNr 

) 

SELECT PersonalNr, Vorname, Nachname 

FROM Vorgesetzte 

Bei einem 3. Test fehlte wieder die Spalte VorgesetzterPersonalNr (wie beim 1. Test), aber 

zumindest RECURSIVE war korrekt geschrieben. 

30. Die Abteilungen, in denen Vorgesetzte von Peter Müller arbeiten, auch indirekt Vorgesetzte 

Hier wurde eine falsche Lösung generiert, in der die indirekten Vorgesetzte fehlen, weil gar 

keine Rekursion (CTE) in der Abfrage genutzt wird.  

Zudem ist der Mitarbeiter v (Peter Müller) der Vorgesetzte der Mitarbeiter m 

(m.VorgesetzterPersonalNr = v.PersonalNr), deren Abteilungen ausgegeben werden. Korrekt 

wäre jedoch, die Abteilungen der Vorgesetzten auszugeben, und nicht die der Untergeordneten 

von Peter Müller. 

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung 

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m  

ON a.AbteilungsNr = m.ArbeitetInAbteilungsNr 

JOIN AbteilungsDB.Mitarbeiter v ON m.VorgesetzterPersonalNr = v.PersonalNr 

WHERE v.Vorname = 'Peter' AND v.Nachname = 'Müller' 

Die Wiederholung des Tests führte wieder zu einer Abfrage ohne Rekursion (CTE). Jedoch 

werden jetzt genau 2 Stufen der Vorgesetztenbeziehung verwendet, d.h. der direkte 

Vorgesetzte und alle Vorgesetzten ab der Stufe 3 fehlen. Außerdem wurde Peter Meier wieder 

als Vorgesetzter verwendet und nicht als Untergeordneter. 

SELECT DISTINCT a.AbteilungsNr, a.Bezeichnung 

FROM AbteilungsDB.Abteilung a JOIN AbteilungsDB.Mitarbeiter m  

ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr 

JOIN AbteilungsDB.Mitarbeiter v1 ON v1.PersonalNr = m.VorgesetzterPersonalNr 

JOIN AbteilungsDB.Mitarbeiter v2 ON v2.PersonalNr = v1.VorgesetzterPersonalNr 

WHERE v2.Vorname = 'Peter' AND v2.Nachname = 'Müller' 
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31. Die Abteilungen und die Standorte an denen Vorgesetzte von Peter Müller arbeiten, auch 

indirekt Vorgesetzte 

Hier verhielt sich ChatGPT sehr seltsam, weil es keine eindeutige Antwort lieferte, sondern die 

nachfolgend dargestellten beiden „Reaktionen“. Dabei ist die Reaktion 1 korrekt. Die 

Reaktion 2 ist falsch, weil die Spalte AbteilungsleiterPersonalNr (in der WHERE-Klausel) 

verwendet wird, d.h. es werden die Abteilungsleiter der Vorgesetzten berücksichtigt, nicht die 

Vorgesetzten selbst. 

Reaktion 1 

WITH RECURSIVE Vorgesetzte AS ( 

-- Starte mit dem direkten Vorgesetzten von Peter Müller 

SELECT m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m 

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller' 

UNION ALL 

-- Rekursive Suche nach allen indirekten Vorgesetzten 

SELECT m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter m JOIN Vorgesetzte v  

ON m.PersonalNr = v.VorgesetzterPersonalNr 

) 

SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname 

FROM AbteilungsDB.Mitarbeiter m JOIN AbteilungsDB.Abteilung a  

ON m.ArbeitetInAbteilungsNr = a.AbteilungsNr 

JOIN AbteilungsDB.Standort s ON a.StandortNr = s.StandortNr 

WHERE m.PersonalNr IN (SELECT VorgesetzterPersonalNr FROM Vorgesetzte) 

Reaktion 2 

WITH RECURSIVE Vorgesetzte AS ( 

-- Basisfall: Direkter Vorgesetzter von Peter Müller 

SELECT m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter AS m 

WHERE m.Vorname = 'Peter' AND m.Nachname = 'Müller' 

     UNION 

-- Rekursiver Fall: Finde alle indirekten Vorgesetzten 

SELECT m.VorgesetzterPersonalNr 

FROM AbteilungsDB.Mitarbeiter AS m 

INNER JOIN Vorgesetzte v ON m.PersonalNr = v.VorgesetzterPersonalNr 

) 

SELECT a.AbteilungsNr, a.Bezeichnung, s.StandortNr, s.Ortsname 

FROM AbteilungsDB.Abteilung AS a JOIN AbteilungsDB.Standort AS s  

ON a.StandortNr = s.StandortNr 

WHERE a.AbteilungsleiterPersonalNr IN ( SELECT VorgesetzterPersonalNr  

FROM Vorgesetzte) 

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind 

Die generierte Lösung ist fast korrekt, wobei zusätzlich Vorgesetzte von Peter Müller berück-

sichtigt werden. Gewünscht war jedoch nur die Ausgabe der Abteilungsleiter von dessen 



 
 

29

Freunden. Grund für den Fehler ist, dass (ähnlich wie bei der Aufgabenstellung 25) die 

Bedingung fehlt, dass die Mitarbeiter m und v nicht identisch sein dürfen (vgl. AND in 

Anhang B). 

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM AbteilungsDB.Mitarbeiter AS m JOIN AbteilungsDB.Abteilung AS a  

ON m.PersonalNr = a.AbteilungsleiterPersonalNr 

JOIN AbteilungsDB.IstBefreundetMit AS ib  

ON m.PersonalNr = ib.PersonalNr1 OR m.PersonalNr = ib.PersonalNr2 

JOIN AbteilungsDB.Mitarbeiter AS v  

ON (ib.PersonalNr1 = v.PersonalNr OR ib.PersonalNr2 = v.PersonalNr) 

WHERE v.PersonalNr IN ( 

SELECT VorgesetzterPersonalNr  

FROM AbteilungsDB.Mitarbeiter  

WHERE Vorname = 'Peter' AND Nachname = 'Müller' ) 

3. DeepSeek (Version V3) 

Dieses LLM hat in den durchgeführten Tests die meisten bereits beim ersten Versuch völlig 

korrekten Lösungen generiert. Bei falschen Lösungen führte eine Wiederholung des Tests 

schließlich zumindest zu einer teilweise (d.h. fast) korrekten Lösung. 

11. Der Kunde (oder die Kunden) mit dem größten Umsatz 

Auch hier wurde bei der ursprünglichen Aufgabenstellung („Der Kunde mit …“) eine Abfrage 

mit „LIMIT 1“ generiert (s.u.), die nur eine einzige Zeile ausgibt. Dieser Mangel war nach der 

Klarstellung der Aufgabenstellung verschwunden. 

SELECT KundenNr, Name, Umsatz 

FROM Kunde 

ORDER BY Umsatz DESC 

LIMIT 1 

20. Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) 

bestellt haben 

Die generierte Lösung ist zwar korrekt, verwendet jedoch unnötigerweise die Tabelle Kunde in 

der Sub-Query. Da die KundenNr auch in der Tabelle Bestellung enthalten ist (b.KundenNr, 

vgl. Join-Bedingung), könnte auch diese von der Sub-Query zurückgegeben werden. 

SELECT DISTINCT a.Strasse, a.HausNr AS HNr, a.PLZ, a.Ort 

FROM KundenDB.Adresse a JOIN KundenDB.Kunde k ON a.KundenNr = k.KundenNr 

WHERE k.KundenNr NOT IN ( 

SELECT DISTINCT k.KundenNr  

FROM KundenDB.Kunde k JOIN KundenDB.Bestellung b ON k.KundenNr = b.KundenNr 

JOIN KundenDB.BestellPos bp ON b.BestellNr = bp.BestellNr 

JOIN KundenDB.Artikel ar ON bp.ArtikelNr = ar.ArtikelNr 

WHERE ar.Gewicht = 1715 ) 

24. Alle Abteilungen, die Freunde des Mitarbeiters Peter Müller leiten 

Wie z.B. bereits bei der Aufgabenstellung 25 beim Microsoft Copilot beschrieben, ist die unten 

dargestellte Lösung nur dann korrekt, wenn alle Freundschaftsbeziehungen „doppelt“ in der 
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Tabelle IstBefreundetMit eingetragen sind (was aber so nicht vorgegeben war). Die generierte 

Lösung wurde deshalb wieder nur als „noch korrekt“ gewertet. 

SELECT A.AbteilungsNr, A.Bezeichnung 

FROM Abteilung A JOIN Mitarbeiter M ON A.AbteilungsleiterPersonalNr = M.PersonalNr 

JOIN IstBefreundetMit F ON M.PersonalNr = F.PersonalNr2 

JOIN Mitarbeiter PM ON F.PersonalNr1 = PM.PersonalNr 

WHERE PM.Vorname = 'Peter' AND PM.Nachname = 'Müller' 

Bei den nächsten beiden Aufgabenstellungen wurde jeweils eine Lösung generiert, bei der 

dieser Fehler vermieden wurde (obwohl die Aufgabenstellungen teilweise komplizierter sind). 

Es existiert also keine „Zuverlässigkeit“ bzgl. der Qualität der generierten SQL-Abfragen. 

27. Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Müller 

Die generierte Lösung ist wegen der verschachtelten Sub-Queries recht verwirrend. Außerdem 

wird unnötigerweise (vgl. Anhang B) doppelt mit dem Namen Peter Müller verglichen. Inhaltlich 

ist die SQL-Abfrage fast korrekt. Der einzige Fehler ist, dass Peter Müller als sein eigener 

Freund betrachtet wird. Deswegen wird fälschlicherweise zusätzlich sein Abteilungsleiter 

ausgegeben, und nicht nur die seiner Freunde. Denselben Fehler machte z.B. auch Microsoft 

Copilot bei der Aufgabenstellung 32 und ChatGPT bei Nr. 25 und 32. 

SELECT m.PersonalNr, m.Vorname, m.Nachname 

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr 

WHERE a.AbteilungsNr IN ( 

SELECT ma.ArbeitetInAbteilungsNr 

FROM Mitarbeiter ma JOIN IstBefreundetMit f  

ON ma.PersonalNr = f.PersonalNr1 OR ma.PersonalNr = f.PersonalNr2 

WHERE (f.PersonalNr1 =  

(SELECT PersonalNr  

 FROM Mitarbeiter  

 WHERE Vorname = 'Peter' AND Nachname = 'Müller') 

OR f.PersonalNr2 =  

(SELECT PersonalNr  

 FROM Mitarbeiter  

 WHERE Vorname = 'Peter' AND Nachname = 'Müller')  

)  

) 

32. Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind 

Die zuerst generierte Lösung ist fehlerhaft, weil auch der Vorgesetzte von Peter Müller ausge-

geben wird. Grund hierfür ist, dass die Mitarbeiter m und v identisch sein können, z.B. wenn bei 

beiden Join-Bedingungen PersonalNr1 verwendet wird. Es fehlt also wieder eine mit AND 

verknüpfte Bedingung, die dies explizit ausschließt (vgl. Anhang B).  

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr 

JOIN IstBefreundetMit b  

ON m.PersonalNr = b.PersonalNr1 OR m.PersonalNr = b.PersonalNr2 

JOIN Mitarbeiter v ON (b.PersonalNr1 = v.PersonalNr OR b.PersonalNr2 = v.PersonalNr) 

JOIN Mitarbeiter p ON v.VorgesetzterPersonalNr = p.PersonalNr 
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WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

Die erneute Ausführung dieses Tests führte zu eine SQL-Abfrage, bei der dieser Fehler nicht 

auftritt. Stattdessen wird jetzt aber wieder angenommen (vgl. Nr. 24), dass alle Freundschafts-

beziehungen doppelt in der Tabelle IstBefreundetMit eingetragen sind. Deswegen ist diese 

Lösung lediglich als noch korrekt zu betrachten. 

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr 

JOIN IstBefreundetMit ibm ON m.PersonalNr = ibm.PersonalNr2 

JOIN Mitarbeiter vorgesetzter ON ibm.PersonalNr1 = vorgesetzter.PersonalNr 

JOIN Mitarbeiter peter ON vorgesetzter.PersonalNr = peter.VorgesetzterPersonalNr 

WHERE peter.Vorname = 'Peter' AND peter.Nachname = 'Müller' 

Eine dritte Ausführung dieses Tests führte zu einer Lösung, mit derselben Unzulänglichkeit, wie 

beim zweiten Versuch. 

33. Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Müller befreundet sind 

Beim ersten Test wurde eine falsche Lösung generiert. Bei dieser ermittelt die 1. Sub-Query 

die PersonalNr vom Abteilungsleiter von Peter Müller und gibt diese zurück. Das zugehörige IN 

sorgt dafür, dass die AbteilungsleiterPersonalNr der Abteilung a diesen Wert hat. Da es also 

derselbe Abteilungsleiter sein muss, ist a die Abteilung, der Peter Müller zugeordnet ist. Durch 

den 1. Join werden die Abteilungskollegen von Peter Müller ausgegeben. Die eigentlich 

notwendige Beziehung IstBefreundetMit wird nicht sinnvoll verwendet. Dies ist daran zu 

erkennen, dass nur ein einziger Fremdschlüssel dieser N:M-Beziehung verwendet wird (in der 

Join-Bedingung mit dem OR, d.h. entweder b.PersonalNr1 oder b.PersonalNr2). Der jeweils 

andere Fremdschlüssel kommt in gar keiner Bedingung vor, so dass die daraus resultierenden 

Freunde überhaupt nicht ermittelt werden. 

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr 

JOIN IstBefreundetMit b ON a.AbteilungsleiterPersonalNr = b.PersonalNr1  

OR a.AbteilungsleiterPersonalNr = b.PersonalNr2 

WHERE a.AbteilungsleiterPersonalNr IN ( 

         SELECT a2.AbteilungsleiterPersonalNr 

         FROM Mitarbeiter m2 JOIN Abteilung a2  

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr 

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller' ) 

   AND m.PersonalNr <> (  

SELECT a2.AbteilungsleiterPersonalNr 

FROM Mitarbeiter m2 JOIN Abteilung a2  

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr 

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller' ) 

Eine wiederholte Ausführung dieses Tests führte zu einer korrekten Lösung. Hier wird sogar 

explizit berücksichtigt, dass Freundschaftsbeziehungen evtl. nicht doppelt in der Tabelle 

IstBefreundetMit eingetragen sind. Dies erfolgt durch das OR und die ersten beiden Sub-

Queries. Außerdem wird durch das != () und die 3. Sub-Query der Abteilungsleiter von Peter 

Müller aus dem Ergebnis ausgeschlossen. 



 
 

32

Allerdings ist auch diese Lösung (durch die vielen Sub-Queries und den mehrfachen Vergleich 

mit dem Namen Peter Müller) verwirrender und komplexer als die in Anhang B dargestellte 

SQL-Abfrage. 

SELECT DISTINCT m.PersonalNr, m.Vorname, m.Nachname 

FROM Mitarbeiter m JOIN Abteilung a ON m.PersonalNr = a.AbteilungsleiterPersonalNr 

JOIN IstBefreundetMit b ON a.AbteilungsleiterPersonalNr = b.PersonalNr1  

OR a.AbteilungsleiterPersonalNr = b.PersonalNr2 

WHERE ( 

b.PersonalNr1 = ( 

SELECT a2.AbteilungsleiterPersonalNr 

FROM Mitarbeiter m2 JOIN Abteilung a2  

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr 

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller' )  

OR b.PersonalNr2 = ( 

SELECT a2.AbteilungsleiterPersonalNr 

FROM Mitarbeiter m2 JOIN Abteilung a2  

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr 

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller' ) 

)  

AND m.PersonalNr != ( 

SELECT a2.AbteilungsleiterPersonalNr 

FROM Mitarbeiter m2 JOIN Abteilung a2  

ON m2.ArbeitetInAbteilungsNr = a2.AbteilungsNr 

WHERE m2.Vorname = 'Peter' AND m2.Nachname = 'Müller' ) 

Sonstige Auffälligkeiten 

Im Folgenden sind einige Auffälligkeiten der generierten Ergebnisse dargestellt, die 

unabhängig von der reinen Korrektheit der SQL-Abfragen sind. 

1. Erklärungen durch das LLM 

Alle getesteten LLMs haben, außer der SQL-Abfrage selbst, jeweils einen Text generiert, der 

deren Funktionsweise erklärt. Diese Erklärungen können für den Benutzer hilfreich sein, um die 

Lösung zu besser verstehen. Im Idealfall hilft dies Studierenden sogar, zukünftig für ähnliche 

Problemstellungen selbst eine entsprechende SQL-Abfrage zu erstellen. Es ist also dadurch 

ein gewisser „Lerneffekt“ möglich. Nachfolgend ist exemplarisch die von ChatGPT erstellte 

Erklärung für die Aufgabenstellung 27 dargestellt: 

Um die Abteilungsleiter von Freunden des Mitarbeiters Peter Müller zu ermitteln, müssen wir 

folgende Schritte in der SQL-Abfrage durchführen: 

1. Mitarbeiter suchen: Zuerst müssen wir den PersonalNr des Mitarbeiters „Peter Müller“ 

herausfinden. 

2. Freunde von Peter Müller finden: Wir ermitteln alle Freunde, die mit „Peter Müller“ über 

die Tabelle IstBefreundetMit verknüpft sind. 
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3. Abteilungsleiter der Freunde finden: Für jeden Freund suchen wir den Abteilungsleiter 

der jeweiligen Abteilung, in der der Freund arbeitet. 

4. Abteilungsleiter-Informationen anzeigen: Zuletzt holen wir die Daten der Abteilungsleiter, 

also deren PersonalNr, Vorname, und Nachname. 

Die SQL-Abfrage sieht wie folgt aus: 

SELECT DISTINCT A.AbteilungsleiterPersonalNr AS PersonalNr, M.Vorname, M.Nachname 

FROM AbteilungsDB.Mitarbeiter P JOIN AbteilungsDB.IstBefreundetMit IB  

ON P.PersonalNr = IB.PersonalNr1 OR P.PersonalNr = IB.PersonalNr2 

JOIN AbteilungsDB.Mitarbeiter F  

ON (IB.PersonalNr1 = F.PersonalNr AND P.PersonalNr != IB.PersonalNr1) 

OR (IB.PersonalNr2 = F.PersonalNr AND P.PersonalNr != IB.PersonalNr2) 

JOIN AbteilungsDB.Abteilung A ON F.ArbeitetInAbteilungsNr = A.AbteilungsNr 

JOIN AbteilungsDB.Mitarbeiter M ON A.AbteilungsleiterPersonalNr = M.PersonalNr 

WHERE P.Vorname = 'Peter' AND P.Nachname = 'Müller'; 

Erklärung: 

• Zuerst suchen wir nach dem Mitarbeiter „Peter Müller“ in der Tabelle Mitarbeiter (abgefragt 

über P). 

• Wir verbinden die Tabelle IstBefreundetMit, um alle Freunde von Peter Müller zu finden 

(über die Verknüpfung der PersonalNr von „Peter Müller“ mit den PersonalNr1 oder 

PersonalNr2). 

• Anschließend verknüpfen wir die Tabelle Abteilung, um für jeden Freund die zugehörige 

Abteilung zu finden. 

• Schließlich holen wir die Daten des Abteilungsleiters (über die AbteilungsleiterPersonalNr 

aus der Tabelle Abteilung), indem wir auf die Tabelle Mitarbeiter zugreifen. 

Die Ergebnismenge enthält dann die PersonalNr, den Vorname und den Nachname der 

Abteilungsleiter, die für die Freunde von Peter Müller zuständig sind. 

Allerdings waren auch die falschen Lösungen mit einer teilweise „plausibel klingenden“ 

Erklärung versehen. So erstellte z.B. Microsoft Copilot für die Aufgabenstellung 19 den 

nachfolgend dargestellten Erklärungstext. Die SQL-Abfrage ist – wie bereits im vorherigen 

Abschnitt erläutert – jedoch falsch, und der Erklärungstext führt möglicherweise dazu, dass ein 

Benutzer sie für plausibel und deshalb die SQL-Abfrage für korrekt hält. Dies gilt umso mehr, 

als dass der Erklärungstext keinen deutlich erkennbaren „roten Faden“ besitzt, so dass 

aufgrund von Begründungen kein „Denkfehler“ (z.B. verletzte Kausalität) erkennbar wäre. 

Um die Kunden zu finden, die keinen Artikel mit einem Gewicht von 1715 kg bestellt haben, 

kannst du eine SQL-Abfrage verwenden, die eine Kombination aus LEFT JOIN und WHERE-

Klauseln nutzt, um die gewünschten Ergebnisse zu filtern. Hier ist ein Beispiel für eine solche 

Abfrage: 

SELECT k.KundenNr, k.Name, k.Umsatz 

FROM Kunde k LEFT JOIN Bestellung b ON k.KundenNr = b.KundenNr 

LEFT JOIN BestellPos bp ON b.BestellNr = bp.BestellNr 

LEFT JOIN Artikel a ON bp.ArtikelNr = a.ArtikelNr AND a.Gewicht = 1715 

WHERE a.ArtikelNr IS NULL; 

Diese Abfrage funktioniert wie folgt: 
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1. LEFT JOIN verbindet die Tabellen Kunde, Bestellung, BestellPos und Artikel. 

2. Die Bedingung AND a.Gewicht = 1715 stellt sicher, dass nur Artikel mit einem Gewicht 

von 1715 kg in die Verbindung einbezogen werden. 

3. Die WHERE-Klausel a.ArtikelNr IS NULL filtert die Ergebnisse, um nur die Kunden 

anzuzeigen, die keinen Artikel mit einem Gewicht von 1715 kg bestellt haben. 

Falls du noch weitere Fragen hast oder Hilfe benötigst, lass es mich wissen! সহ঺঻ 

2. Verwirrende Lösungen 

Die LLMs generierten teilweise sehr verwirrende Lösungen. Wie bereits im vorherigen 

Abschnitt erläutert, wurden z.B. sehr viele Sub-Queries verwendet, teilweise sogar bei 

Aufgabenstellungen, die problemlos ganz ohne Sub-Query lösbar sind. Dies war unter 

anderem der Fall bei ChatGPT bei der Aufgabenstellung 29 und bei DeepSeek bei den 

Aufgabenstellungen 33 und 27. Bei der letzteren wurden sogar ineinander verschachtelte Sub-

Queries verwendet. In diesen war zudem auch noch der Vergleich mit dem vorgegebenen 

Namen Peter Müller doppelt realisiert (d.h. in zwei dieser Sub-Queries). 

Selbstverständlich können auch solch komplexe Lösungen von einem Datenbanksystem 

ausgeführt werden. Problematisch ist im hier betrachteten Kontext jedoch, wenn Studierende 

versuchen, die generierte SQL-Abfrage als Muster für diese Art von Aufgabenstellung zu 

erlernen. Aufgrund der unnötig komplexen SQL-Abfrage wird es für sie schwierig sein, im Falle 

einer ähnlichen Aufgabenstellung, eine korrekte Lösung auf dieser Basis zu erstellen. 

3. Sonstiges 

Häufig wurde in den generierten SQL-Abfragen eine „Langform“ für Namen von Tabellen 

verwendet, z.B. KundenDB.Adresse. Dieses Format (also Datenbankname.Tabellenname) ist 

in MySQL erlaubt und die Vorgabe der von MySQL-Workbench generierten CREATE-TABLE-

Befehle im Prompt kann eine Ursache hierfür sein. Dieses Tabellennamen-Format funktioniert 

jedoch bei anderen Datenbanksystemen nicht (z.B. Microsoft Access). Außerdem ist es 

auffällig, weil es so in (normalen) Datenbank-Vorlesung nicht gelehrt wird und zudem in 

Lehrbüchern zu SQL so nicht verwendet wird. Dies kann also ein Indiz dafür darstellen, dass 

eine SQL-Abfrage (z.B. in einer Prüfung) nicht vom Studierenden erstellt, sondern mittels einer 

KI generiert wurde. 

Ähnlich ist es mit der Tatsache, dass häufig Lösungen mit dem Schlüsselwort JOIN anstatt 

INNER JOIN generiert wurden. Auch das wird in Vorlesungen oft nicht so gelehrt und kann bei 

manchen Datenbanksystemen (z.B. Microsoft Access) so nicht verwendet werden. 

Schließlich haben alle LLMs für die Aufgabenstellung 11 bei der Originalformulierung (der 

Kunde mit dem größten Umsatz) eine Lösung mit „limit 1“ generiert. Dies ist keine Operation 

der Relationenalgebra, wird so üblicherweise nicht gelehrt und wird ebenfalls von manchen 

Datenbanksystemen nicht unterstützt. 

Fazit 
Bei den durchgeführten Tests hing die Qualität der generierten SQL-Abfragen von dem jeweils 

verwendeten LLM ab (wie in Abb. 3 an den Hintergrundfarben leicht erkennbar ist). Jedoch ist 

die Anzahl der getesteten Aufgabenstellung und auch die Anzahl der jeweiligen Wieder-

holungen der Tests zu gering, um die Qualität der LLMs verallgemeinerbar vergleichen zu 

können. Dies war auch nicht das Ziel der Experimente. Es konnte jedoch gezeigt werden, dass 
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alle untersuchten LLMs nicht absolut fehlerfrei fähig sind, eine SQL-Abfrage für eine gegebene 

Aufgabenstellung zu generieren. Es entstanden sogar falsche Lösungen bei der sehr einfach 

strukturierten Kunden-Datenbank und auch bei recht einfachen Aufgabenstellungen (aus einer 

Einführungsvorlesung zum Thema Datenbanken).  

Bei dem komplexeren Schema der Firmen-Datenbank wurden deutlich mehr falsche Abfragen 

generiert. Fehler waren unter anderem eine falsche Verwendung der rekursiven Beziehungen 

(z.B. IstBefreundetMit) oder die Benutzung der falschen Beziehung, wenn mehrere zwischen 

denselben Tabellen existieren. Dass in diesen Fällen mehr Fehler auftreten ist auch 

nachvollziehbar, weil mehrere Fremdschlüssel-Attribute existieren, so dass ein falsches 

verwendet werden kann. Zudem waren die resultierenden Join-Bedingungen bei manchen 

Aufgabenstellungen komplexer. Entsprechende Szenarien entsprechen (wie bei der 

Literaturanalyse dargestellt) aber eher dem, was in einem realen betrieblichen Umfeld zu 

erwarten ist (dann evtl. aber mit noch deutlich mehr Tabellen und Spalten). 

Zusammenfassend lässt sich feststellen, dass die Generierung von SQL-Abfragen keineswegs 

fehlerfrei erfolgt ist. Deshalb sind deren Kontrolle und ggf. Überarbeitung durch den Benutzer 

erforderlich. Andererseits wurden (insb. durch DeepSeek) so gute Abfragen generiert, dass 

deren Verwendung in einer Prüfung zu einem besseren Ergebnis führen kann, als deren 

selbstständige Erstellung (zumindest bei Studierenden mit schlechten SQL-Kenntnissen). 

Schlussfolgerungen  
Im Folgenden werden einige Konsequenzen abgeleitet, sowohl für die Generierung von SQL-

Abfragen im beruflichen Umfeld als auch für die Lehre. 

SQL-Generierung in der betrieblichen Praxis 
Folgende Vorgehensweisen für die Erstellung von SQL-Abfragen sind theoretisch denkbar: 

1. Generierung von SQL-Anweisungen ohne deren Kontrolle: 

Die durchgeführten Tests basierten allesamt auf Datenbank-Schemata und Aufgaben-

stellungen, die, verglichen mit einem beruflichen Umfeld, recht einfach waren. Dennoch 

wurden völlig falsche oder unzulängliche SQL-Abfragen generiert. Auch die Literaturanalyse 

bestätigt diesen Sachverhalt. Daraus folgt, dass die Verwendung von automatisch 

generierten Ergebnissen ohne weitere Kontrolle nicht sinnvoll ist. 

2. Generierung von SQL-Anweisungen mit anschließender Kontrolle: 

Eine akzeptable Möglichkeit ist, sich für eine gegebene Problemstellung die zugehörige 

SQL-Abfrage generieren zu lassen und dann zu überprüfen. Hierfür sind ähnliche SQL-

Kenntnisse erforderlich, wie für die selbstständige Erstellung der Abfrage. Evtl. lässt sich so 

jedoch Arbeitszeit einsparen. Allerdings birgt diese Vorgehensweise die Gefahr, dass Fehler 

im generierten Programm-Code übersehen werden, weil der Benutzer nicht zuerst selbst 

über die Problemstellung nachgedacht hat. Dann kann eine falsche Lösung durchaus 

plausibel wirken. Die (im vorherigen Abschnitt bereits diskutierten) Erklärungstexte des 

LLMs können zusätzlich dazu führen, dass man die erläuterte Funktionsweise einer falschen 

Lösung plausibel findet. Durch die teilweise sehr verwirrenden SQL-Abfragen, welche die 

LLMs generieren, wird es für den Benutzer zusätzlich erschwert, Fehler als solche zu 

erkennen. 
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3. Manuelle Erstellung und anschließende SQL-Generierung zur Überprüfung: 

Vermutlich ist es die sicherste Vorgehensweise, eine Lösung zuerst manuell zu erstellen. 

Danach kann eine generierte SQL-Abfrage genutzt werden, um so nach Fehlern in der 

eigenen Lösung zu suchen. Beispielsweise kann die in einer generierten SQL-Abfrage 

enthaltene Bedingung „AND p.PersonalNr <> AbtLeiter.PersonalNr“ (vgl. Aufgaben-

stellung 24 im Anhang B) dazu führen, dass der Benutzer erkennt, dass der Abteilungsleiter 

(AbtLeiter) ansonsten mit der Person (p) identisch sein kann. Ähnlich kann hier wegen der 

generierten Oder-Verknüpfung „OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2“ 

erkannt werden, dass Freundschaften nicht doppelt in der Tabelle IstBefreundetMit 

gespeichert sind (oder eben doch, weshalb diese Bedingung weggelassen werden kann, um 

so eine bessere Ausführungsgeschwindigkeit zu erzielen). Idealerweise wird die selbst 

erstellte SQL-Abfrage mit mehreren generierten Lösungen verglichen, wobei hierfür 

unterschiedliche LLMs verwendet werden sollten. 

Die akzeptablen Vorgehensweisen 2 und 3 haben gemeinsam, dass hierfür gute SQL-

Kenntnisse erforderlich sind.  

Auswirkungen auf die Lehre 
Im Folgenden werden einige Aspekte dargestellt, welche die zukünftige Gestaltung von 

Lehrveranstaltungen und Prüfungen betreffen.  

1. SQL weiterhin Thema in der Lehre: 

Eine Erkenntnis dieser Arbeit ist, dass Mitarbeiter weiterhin SQL-Kompetenzen benötigen. 

Der Grund dafür ist, dass von einer KI generierte Lösungen zwar häufig korrekt sind, man 

sich aber nicht darauf verlassen kann. Obwohl insb. DeepSeek häufig korrekte SQL-

Abfragen erstellt hat, war dies nicht bei jeder Wiederholung desselben Experiments der Fall, 

d.h. teilweise erst bei der 2. Durchführung des Tests. Da die Tests unabhängig voneinander 

durchgeführt wurden, kann natürlich ebenso die erste Lösung korrekt sein und die nach-

folgend durchgeführten Tests zu einem falschen Ergebnis führen. Zudem entstand bei einer 

geringfügig veränderten Aufgabenstellung beim selben LLM manchmal eine fehlerhafte (z.B. 

DeepSeek Aufgabe 24) und manchmal eine korrekte Lösung (Aufgabe 25 und 26). Der 

Benutzer muss die generierten SQL-Abfragen also verstehen und überprüfen können. 

Hierfür sind gute SQL-Kenntnisse erforderlich, weil die Fehler teilweise schwer zu finden 

sind (wie u.a. bei Microsoft Copilot für Aufgabe 30 diskutiert).  

Dasselbe gilt für die Vorgehensweise, das Prompt um Erklärungen und Beispiele anzu-

reichern. Die generierten Ergebnisse müssen dennoch überprüft werden, weil diese 

Vorgehensweise zwar manchmal zu einer fehlerfreien Lösung führt (vgl. Copilot Auf-

gabe 16b. bis d.), ein zusätzliches Beispiel aber auch in einer falschen Lösung resultieren 

kann (vgl. Copilot Aufgabe 18). Auch sehr ausführliche Erklärungen und Beispiele führen 

also nicht zuverlässig zu einer korrekten SQL-Abfrage. Deshalb ist es weiterhin erforderlich, 

dass das Erstellen von SQL-Abfragen im Rahmen von Datenbank-Vorlesungen gelehrt wird. 

Evtl. sollte hier jedoch der Aspekt des Verstehens und Überprüfens von SQL-Abfragen 

gestärkt werden. 

2. Unterstützung des Lernens durch LLMs: 

Alle getesteten LLMs haben zusätzlich zur geforderten SQL-Abfrage auch Erklärungstexte 

generiert. Diese können helfen, den generierten SQL-Code zu verstehen und damit das 
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Erlernen von SQL unterstützen. Allerdings kann ein Erklärungstext bei einer falsch 

generierten SQL-Abfrage auch nachteilig sein, da dieser dann meisten ebenfalls inhaltlich 

falsch sein wird. Dies ist für Studierende evtl. schwer erkennbar, so dass sie annehmen, die 

Lösung und die Begründung seien korrekt. Es kann sich dann nachteilig auf den Lernerfolg 

auswirken, wenn falsche Lösungen als Muster für diese Art von Problemstellung verinner-

licht werden. 

Ähnlich negativ für den Lerneffekt ist, dass die LLMs teilweise unnötig komplexe SQL-

Abfragen generieren. Werden solche Lösungen zum Lernen verwendet, dann versuchen 

Studierende sich diese als Muster für eine bestimmte Art von Aufgabenstellung einzu-

prägen. Bei sehr komplexen SQL-Abfragen ist das jedoch schwierig und später wird es ein 

Problem darstellen, eine Lösung für eine ähnliche Aufgabenstellung korrekt zu reprodu-

zieren. Es ist einfacher, kürzere und gut strukturierte Lösungen (vgl. Anhang B) zu 

verstehen, wie sie z.B. in einem Lehrbuch vermittelt werden. 

3. Auswirkungen auf Prüfungen: 

Die generierten Ergebnisse (insb. bei DeepSeek) sind recht gut. Deshalb kann es für 

Studierende mit beschränkten SQL-Kenntnissen vorteilhaft sein (d.h. es führt zu einer 

besseren Note), sich SQL-Abfragen von einem LLM generieren zu lassen, anstatt selbst 

eine Lösung zu erstellen. Dies gilt sogar, wenn sie die von der KI erstellten SQL-Abfragen 

überhaupt nicht verstehen und deshalb auch nicht überprüfen oder verbessern können. 

Daraus folgt, dass eine außerhalb eines überwachten Prüfungsraums abgelegte Leistung 

(z.B. eine Projektarbeit, Ausarbeitung, o.ä.) keinen größeren Einfluss auf die resultierende 

Zeugnisnote haben sollte. 

Zusammenfassung, Limitationen und Ausblick 
In dieser Arbeit wurde wissenschaftliche Literatur zum Thema SQL-Generierung mittels eines 

LLMs analysiert. Außerdem wurden mit drei aktuell populären LLMs hierzu Tests durchgeführt. 

Die Erkenntnis aus beidem ist, dass die Qualität von generierten SQL-Abfragen heutzutage 

zwar gut ist, aber diese keinesfalls zuverlässig fehlerfrei sind. Ziel war es, Auswirkungen auf 

die zukünftig für Hochschulabsolventen erforderlichen Fähigkeiten und die Gestaltung von 

Lehrveranstaltungen zum Thema Datenbanken zu ermitteln. Da die entsprechenden Schluss-

folgerungen im vorherigen Abschnitt bereits ausführlich erläutert wurden, werden nachfolgend 

nur die wichtigsten Ergebnisse kurz zusammengefasst: 

 SQL muss weiterhin ein Bestandteil der Datenbank-Lehre sein, weil generierte SQL-

Abfragen zumindest überprüft und ggf. korrigiert werden müssen. 

 Von LLMs generierte SQL-Abfragen können Studierenden beim Lernen helfen. Da LLMs 

auch falsche oder verwirrende SQL-Abfragen generieren, birgt diese Vorgehensweise aber 

auch Risiken. 

 Weil generierte SQL-Abfragen teilweise eine gute Qualität haben, sollten entsprechende 

Prüfungen nur einem überwachten Prüfungsraum durchgeführt werden bzw. außerhalb 

dieses Raums erstellte Prüfungsleistungen allenfalls einen kleinen Einfluss auf die 

Gesamtnote haben. 

Die mit den LLMs durchgeführten Test lassen keinen verallgemeinerbaren oder quantitativen 

Vergleich von deren Fähigkeit zur SQL-Generierung zu. Hierfür wurden zu wenige Wieder-

holungen für eine Aufgabenstellung durchgeführt und zudem zu wenige unterschiedliche 



 
 

38

Aufgabenstellungen getestet. Außerdem ist es möglich, dass bei einem anderen Szenario oder 

aus einer anderen Formulierung der Aufgabenstellungen ein abweichendes Ergebnis resultiert. 

Ziel war lediglich, einen ersten Eindruck bzgl. der Leistungsfähigkeit verschiedener LLMs zu 

gewinnen. Die Schlussfolgerungen für die Gestaltung zukünftiger Lehrveranstaltungen sind 

nicht formal belegbar und nicht mittels einer Studie überprüft. Evtl. sind sie auch teilweise 

durch die eigene Lehrerfahrung des Autors geprägt und damit nicht objektiv. 

Der von einem LLM generierte Text ist stets abhängig von den verwendeten Lerndaten. Da 

dem Autor unbekannt ist, ob die verwendeten Szenarien in diesen besonders häufig oder 

besonders selten vorkommen, könnten zukünftig noch Tests mit anderen Szenarien 

durchgeführt werden. Außerdem wäre es möglich, zukünftig ähnliche Experiment für andere 

Datenbank-Themen durchzuführen, wie z.B. die Generierung eines Entity-Relationship-

Diagramm aus einer vorgegebene Szenariobeschreibung, die Ableitung der daraus 

resultierenden Datenbanktabellen oder die Generierung eines Programms, das SQL-

Anweisungen enthält (z.B. ein Java-Programm mit JDBC-Anweisungen). 
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Anhang A: Übersicht über die Aufgabenstellungen  

Auf Basis der Kunden-Datenbank (vgl. Abb. 1): 

1.  

Anzeige aller Zahlungsarten, bei denen ein „a“ in der Bezeichnung vorkommt. 

Auszugebende Ergebnisspalten: ZahlArtNr, Bezeichnung 

2. 

Alle Bestellungen und die zugehörige Rechnungsnummer, sortiert nach BestellNr. 

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum, RechnungsNr 

3. 

Alle Bestellungen und die zugehörige Rechnungsnummer, sortiert nach BestellNr, inkl. der 

Bestellungen, für die (noch) keine Rechnung existiert. 

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum, RechnungsNr 

4. 

Alle Bestellungen sortiert nach BestellNr, aber nur Bestellungen, für die (noch) keine Rechnung 

existiert. 

Auszugebende Ergebnisspalten: BestellNr, Bestell-Datum 

5. 

Anzahl der Bestellungen je Artikel. 

Auszugebende Ergebnisspalten: ArtikelNr, Artikelname, Anzahl Bestellungen 

6. 

Preis (aus Tabelle Bestellposition) des teuersten Artikels, den AVIS bestellt hat. 

Auszugebende Ergebnisspalten: Preis, das Ergebnis soll nur 1 Zeile enthalten 

7. 

Alle besonderen Kunden, d.h. alle Problemkunden und alle Premiumkunden – aber nicht die 

„normalen“ Kunden. 

Auszugebende Ergebnisspalten: KundenNr, Name, Anzahl Zahlungsausfälle (bei 

Problemkunden) bzw. Kundenbewertung (bei Problemkunden) 

8. 

Errechnetes Gesamtgewicht und Gesamtherstellkosten aufgeschlüsselt nach Bestelldatum für 

Bestellungen aus dem Jahr 2024.  

Auszugebende Ergebnisspalten: Bestelldatum, Gesamtgewicht, Gesamtherstellkosten 

9. 

Alle Kundendaten, auch für Kunden bei denen einige Daten undefiniert sind. 

Auszugebende Ergebnisspalten: KundenNr, Kundenname, Ort, PLZ, Key-Account-Mgr, Anzahl 

Zahlungsausfälle 

10. 

Übersicht über die Bestellungen mit zugehörigen Detaildaten. 

Auszugebende Ergebnisspalten: BestellNr, Kundenname, Anzahl Bestellpositionen, Preis des 

teuersten Artikels 
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11. 

Der Kunde (oder die Kunden) mit dem größten Umsatz. 

Auszugebende Ergebnisspalten: Ergebnisspalten: KundenNr, Name, Umsatz 

12. 

Alle Kunden, die mind. 2 Bestellpositionen haben. 

Auszugebende Ergebnisspalten: KundenNr, Name 

13. 

Alle Kunden, ohne Bestellpositionen.  

Auszugebende Ergebnisspalten: KundenNr, Name 

14. 

Alle Kunden, die mind. für 100.000€ bestellt haben, basierend auf Preis & Anzahl aus 

BestellPos. 

Auszugebende Ergebnisspalten: KundenNr, Name 

15. 

Zahlungsarten, die ein Kunde mit mehr als 2 Mio € Umsatz benutzt hat, sowie zusätzlich 

Artikel, die in einer Bestellposition als PosNr 1 oder 2 bestellt wurden. 

Auszugebende Ergebnisspalten: Nr, Bezeichnung bzw. Name 

16. 

Bestellungen, in denen kein Artikel mit einem Gewicht von 1715 (kg) bestellt wurde. 

Auszugebende Ergebnisspalten: BestellNr, Datum, KundenNr 

17. 

Alle Zahlungsarten von Kunden, die den Artikel smart4two bestellt haben. 

Auszugebende Ergebnisspalten: ZahlArtNr, (Zahlungsart-)Bezeichnung, (Kunden)Name 

18. 

Kunden, die die Zahlungsart Kreditkarte nie verwendet haben. 

Auszugebende Ergebnisspalten: KundenNr, Name 

19. 

Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt haben. 

Auszugebende Ergebnisspalten: KundenNr, Name, Umsatz 

20. 

Die Adressen derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) bestellt 

haben. 

Auszugebende Ergebnisspalten: Strasse, HNr, PLZ, Ort 

21. 

Die Zahlungsarten derjenigen Kunden, die keinen Artikel mit einem Gewicht von 1715 (kg) 

bestellt haben. 

Auszugebende Ergebnisspalten: ZahlungsartNr, Bezeichnung 
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Auf Basis der Firmen-Datenbank (vgl. Abb. 2): 

22. 

Der Abteilungsleiter der Abteilung "Marketing". 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 

23. 

Alle Mitarbeiter, die in der Abteilung "Marketing" angestellt sind. 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 

24. 

Alle Abteilungen, die Freunde des Mitarbeiters Peter Müller leiten. 

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung 

25. 

Alle Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten. 

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung 

26. 

Die Standorte von Abteilungen, in denen Freunde des Mitarbeiters Peter Müller arbeiten. 

Auszugebende Ergebnisspalten: StandortNr, Ortsname 

27. 

Alle Abteilungsleiter von Freunden des Mitarbeiters Peter Müller. 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 

28. 

Alle Mitarbeiter, die in der selben Abteilung arbeiten wie ein Freund von Peter Müller. 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 

29. 

Alle Vorgesetzten von Peter Müller, auch indirekt Vorgesetzte. 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 

30. 

Die Abteilungen, in denen Vorgesetzte von Peter Müller arbeiten, auch indirekt Vorgesetzte. 

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung 

31. 

Die Abteilungen und die Standorte, an denen Vorgesetzte von Peter Müller arbeiten, auch 

indirekt Vorgesetzte. 

Auszugebende Ergebnisspalten: AbteilungsNr, Bezeichnung, StandortNr, Ortsname 

32. 

Die Abteilungsleiter, die mit einem Vorgesetzten von Peter Müller befreundet sind 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 

33. 

Die Abteilungsleiter, die mit dem Abteilungsleiter von Peter Müller befreundet sind 

Auszugebende Ergebnisspalten: PersonalNr, Vorname, Nachname 
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Anhang B: Mögliche Lösungen für die Aufgabenstellungen  

Auf Basis der Kunden-Datenbank (vgl. Abb. 1): 

1. 

SELECT ZahlArtNr, Bezeichnung 

FROM Zahlungsart 

WHERE Bezeichnung LIKE '%a%' 

2. 

SELECT Bestellung.BestellNr, Bestellung.Datum, Rechnung.RechnungsNr 

FROM Bestellung INNER JOIN Rechnung 

 ON Bestellung.BestellNr = Rechnung.BestellNr  

ORDER BY Bestellung.BestellNr 

3. 

SELECT Bestellung.BestellNr, Bestellung.Datum, Rechnung.RechnungsNr 

FROM Bestellung LEFT OUTER JOIN Rechnung 

 ON Bestellung.BestellNr = Rechnung.BestellNr 

ORDER BY Bestellung.BestellNr 

4. 

SELECT Bestellung.BestellNr, Bestellung.Datum  

FROM Bestellung LEFT OUTER JOIN Rechnung 

 ON Bestellung.BestellNr = Rechnung.BestellNr 

WHERE Rechnung.RechnungsNr IS NULL 

ORDER BY Bestellung.BestellNr 

5. 

SELECT Artikel.ArtikelNr, Artikel.Name, COUNT(BestellNr) AS AnzahlBestellungen 

FROM BestellPos INNER JOIN Artikel 

 ON BestellPos.ArtikelNr = Artikel.ArtikelNr 

GROUP BY Artikel.ArtikelNr, Artikel.Name 

6. 

SELECT MAX(Bestellpos.Preis) AS PreisTeuersterArtikel 

FROM (Bestellpos INNER JOIN Bestellung ON Bestellpos.BestellNr = Bestellung.BestellNr)  

 INNER JOIN Kunde ON Bestellung.KundenNr = Kunde.KundenNr 

WHERE Name = 'AVIS' 

7. 

SELECT Kunde.KundenNr, Name 

FROM Premiumkunde INNER JOIN Kunde ON Premiumkunde.KundenNr = Kunde.KundenNr 

UNION 

SELECT Kunde.KundenNr, Name 

FROM Problemkunde INNER JOIN Kunde ON Problemkunde.KundenNr = Kunde.KundenNr 
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8. 

SELECT Datum, SUM(Gewicht * Anzahl) AS Gesamtgewicht,  

 SUM(Herstellkosten*Anzahl) AS Gesamtherstellkosten 

FROM (Bestellung INNER JOIN Bestellpos ON Bestellung.BestellNr = Bestellpos.BestellNr) 

 INNER JOIN Artikel ON Artikel.ArtikelNr = Bestellpos.ArtikelNr  

WHERE Datum LIKE '%2024' 

GROUP BY Datum 

9.  

SELECT Kunde.KundenNr, Kunde.Name, Ort, PLZ, KeyAccountMgr, AnzZahlungsausfälle 

FROM ((Kunde LEFT OUTER JOIN Adresse ON Kunde.KundenNr = Adresse.KundenNr)  

 LEFT OUTER JOIN Premiumkunde ON Kunde.KundenNr = Premiumkunde.KundenNr)  

 LEFT OUTER JOIN Problemkunde ON Kunde.KundenNr = Problemkunde.KundenNr 

10. 

SELECT Bestellung.BestellNr, Kunde.Name, COUNT(Bestellpos.PosNr) AS AnzahlPositionen, 

 MAX(Preis) AS PreisTeuersterArtikel 

FROM (Bestellung INNER JOIN Kunde ON Bestellung.KundenNr = Kunde.KundenNr)  

 INNER JOIN Bestellpos ON Bestellpos.BestellNr = Bestellung.BestellNr 

GROUP BY Bestellung.BestellNr, Kunde.Name 

11. 

SELECT KundenNr, Name, Umsatz 

FROM Kunde 

WHERE Umsatz = (SELECT MAX(Umsatz) FROM Kunde) 

12. 

SELECT Kunde.KundenNr, Name 

FROM (Kunde INNER JOIN Bestellung ON Kunde.KundenNr=Bestellung.KundenNr) 

 INNER JOIN BestellPos ON Bestellung.BestellNr=BestellPos.BestellNr 

GROUP BY Kunde.KundenNr, Name 

HAVING COUNT(*) >= 2 

13. 

SELECT Kunde.KundenNr, Name 

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr) 

 LEFT OUTER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr 

WHERE PosNr IS NULL 

oder: 

SELECT Kunde.KundenNr, Name 

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr) 

WHERE Bestellung.BestellNr NOT IN (SELECT BestellNr FROM BestellPos) 

oder: 
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SELECT Kunde.KundenNr, Name 

FROM (Kunde LEFT OUTER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr) 

 LEFT OUTER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr 

GROUP BY Kunde.KundenNr, Name 

HAVING COUNT(PosNr) = 0 

14. 

SELECT Kunde.KundenNr, Name, SUM (Preis * Anzahl) AS Gesamtpreis 

FROM (Kunde INNER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr) 

 INNER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr 

GROUP BY Kunde.KundenNr, Name 

HAVING SUM (Preis * Anzahl) >= 100000 

15. 

SELECT Zahlungsart.ZahlArtNr, Bezeichnung 

FROM (Zahlungsart INNER JOIN verwendet ON Zahlungsart.ZahlArtNr = verwendet.ZahlartNr) 

 INNER JOIN Kunde ON verwendet.KundenNr = Kunde.KundenNr 

WHERE Umsatz > 2000000 

UNION  

SELECT Artikel.ArtikelNr, Name 

FROM Artikel INNER JOIN BestellPos ON Artikel.ArtikelNr = BestellPos.ArtikelNr 

WHERE PosNr <= 2 

16. 

SELECT * 

FROM Bestellung  

WHERE BestellNr NOT IN  

 (  SELECT BestellNr 

  FROM BestellPos INNER JOIN Artikel ON Artikel.ArtikelNr = BestellPos.ArtikelNr 

  WHERE Gewicht = 1715 ) 

17. 

SELECT Zahlungsart.ZahlArtNr, Zahlungsart.Bezeichnung, Kunde.Name 

FROM ((((Zahlungsart INNER JOIN Verwendet  

  ON Zahlungsart.ZahlArtNr = Verwendet.ZahlArtNr) 

 INNER JOIN Kunde ON Verwendet.KundenNr = Kunde.KundenNr) 

 INNER JOIN Bestellung ON Kunde.KundenNr = Bestellung.KundenNr) 

 INNER JOIN BestellPos ON Bestellung.BestellNr = BestellPos.BestellNr) 

 INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr 

WHERE Artikel.Name = 'C320' 
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18. 

SELECT KundenNr, Name 

FROM Kunde  

WHERE KundenNr NOT IN  

 ( SELECT KundenNr  

  FROM verwendet INNER JOIN Zahlungsart 

   ON verwendet.ZahlArtNr = Zahlungsart.ZahlArtNr 

  WHERE Bezeichnung = 'Kreditkarte' ) 

19.  

SELECT KundenNr, Name, Umsatz 

FROM Kunde 

WHERE KundenNr NOT IN ( 

 SELECT KundenNr 

 FROM (Bestellung INNER JOIN BestellPos  

   ON Bestellung.BestellNr = BestellPos.BestellNr) 

  INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr 

 WHERE Gewicht = 1715 ) 

20.  

SELECT DISTINCT Strasse, HNr, PLZ, Ort 

FROM Kunde INNER JOIN Adresse ON Kunde.KundenNr = Adresse.KundenNr 

WHERE Kunde.KundenNr NOT IN ( 

 SELECT KundenNr 

 FROM (Bestellung INNER JOIN BestellPos  

   ON Bestellung.BestellNr = BestellPos.BestellNr) 

  INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr 

 WHERE Gewicht = 1715 ) 

21.  

SELECT DISTINCT Zahlungsart.ZahlArtNr, Bezeichnung 

FROM (Kunde INNER JOIN verwendet ON Kunde.KundenNr = verwendet.KundenNr) 

 INNER JOIN Zahlungsart ON verwendet.ZahlArtNr = Zahlungsart.ZahlArtNr 

WHERE Kunde.KundenNr NOT IN ( 

 SELECT KundenNr 

 FROM (Bestellung INNER JOIN BestellPos  

   ON Bestellung.BestellNr = BestellPos.BestellNr) 

  INNER JOIN Artikel ON BestellPos.ArtikelNr = Artikel.ArtikelNr 

 WHERE Gewicht = 1715 ) 

Auf Basis der Firmen-Datenbank (vgl. Abb. 2): 

22. 

SELECT Mitarbeiter.PersonalNr, Vorname, Nachname 

FROM Abteilung INNER JOIN Mitarbeiter  

 ON Abteilung.AbteilungsleiterPersonalNr = Mitarbeiter.PersonalNr 

WHERE Bezeichnung = 'Marketing' 
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23. 

SELECT Mitarbeiter.PersonalNr, Vorname, Nachname 

FROM Abteilung INNER JOIN Mitarbeiter  

 ON Abteilung.AbteilungsNr = Mitarbeiter.ArbeitetInAbteilungsNr 

WHERE Bezeichnung = 'Marketing' 

24. 

SELECT Abteilung.AbteilungsNr, Abteilung.Bezeichnung 

FROM Abteilung INNER JOIN Mitarbeiter AS AbtLeiter 

  ON Abteilung.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr 

 INNER JOIN IstBefreundetMit ON (AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr1  

   OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2) 

 INNER JOIN Mitarbeiter AS p ON (IstBefreundetMit.PersonalNr1 = p.PersonalNr  

   OR IstBefreundetMit.PersonalNr2 = p.PersonalNr) 

  AND p.PersonalNr <> AbtLeiter.PersonalNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

25.  

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung 

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit  

  ON p.PersonalNr = IstBefreundetMit.PersonalNr1  

   OR p.PersonalNr = IstBefreundetMit.PersonalNr2 

 INNER JOIN Mitarbeiter AS freund  

  ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr  

   OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)  

  AND freund.PersonalNr <> p.PersonalNr 

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

26. 

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung 

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit  

  ON p.PersonalNr = IstBefreundetMit.PersonalNr1  

   OR p.PersonalNr = IstBefreundetMit.PersonalNr2 

 INNER JOIN Mitarbeiter AS freund  

  ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr  

    OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)  

   AND freund.PersonalNr <> p.PersonalNr 

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr 

 INNER JOIN Standort ON Abteilung.StandortNr = Standort.StandortNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 
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27. 

SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname 

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit  

  ON p.PersonalNr = IstBefreundetMit.PersonalNr1  

   OR p.PersonalNr = IstBefreundetMit.PersonalNr2 

 INNER JOIN Mitarbeiter AS freund  

  ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr  

    OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)  

   AND freund.PersonalNr <> p.PersonalNr 

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr 

 INNER JOIN Mitarbeiter AS AbtLeiter  

  ON Abteilung.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

28. 

SELECT DISTINCT MitarbInSelberAbt.PersonalNr,  

   MitarbInSelberAbt.Vorname, MitarbInSelberAbt.Nachname 

FROM Mitarbeiter AS p INNER JOIN IstBefreundetMit  

  ON p.PersonalNr = IstBefreundetMit.PersonalNr1  

   OR p.PersonalNr = IstBefreundetMit.PersonalNr2 

 INNER JOIN Mitarbeiter AS freund  

  ON (IstBefreundetMit.PersonalNr1 = freund.PersonalNr  

    OR IstBefreundetMit.PersonalNr2 = freund.PersonalNr)  

   AND freund.PersonalNr <> p.PersonalNr 

 INNER JOIN Abteilung ON freund.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr 

 INNER JOIN Mitarbeiter AS MitarbInSelberAbt  

  ON Abteilung.AbteilungsNr = MitarbInSelberAbt.ArbeitetInAbteilungsNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

29. 

WITH RECURSIVE Vorgesetzte AS ( 

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.Vorname,  

   Mitarbeiter.Nachname, Mitarbeiter.VorgesetzterPersonalNr 

 FROM Mitarbeiter 

 WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Müller' 

 UNION ALL 

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.Vorname, Mitarbeiter.Nachname,  

   Mitarbeiter.VorgesetzterPersonalNr 

 FROM Mitarbeiter INNER JOIN Vorgesetzte  

  ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr 

) 

SELECT PersonalNr, Vorname, Nachname 

FROM  Vorgesetzte 
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30. 

WITH RECURSIVE Vorgesetzte AS ( 

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr,  

  Mitarbeiter.ArbeitetInAbteilungsNr 

 FROM Mitarbeiter 

 WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Müller' 

 UNION ALL 

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr,  

  Mitarbeiter.ArbeitetInAbteilungsNr 

 FROM Mitarbeiter INNER JOIN Vorgesetzte  

  ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr 

) 

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung 

FROM Abteilung INNER JOIN Vorgesetzte 

31. 

WITH RECURSIVE Vorgesetzte AS ( 

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr 

 FROM Mitarbeiter 

 WHERE Mitarbeiter.Vorname = 'Peter' AND Mitarbeiter.Nachname = 'Müller' 

 UNION ALL 

 SELECT Mitarbeiter.PersonalNr, Mitarbeiter.VorgesetzterPersonalNr 

 FROM Mitarbeiter INNER JOIN Vorgesetzte  

  ON Mitarbeiter.PersonalNr = Vorgesetzte.VorgesetzterPersonalNr 

) 

SELECT DISTINCT Abteilung.AbteilungsNr, Abteilung.Bezeichnung, Standort.StandortNr,  

  Standort.Ortsname 

 FROM Vorgesetzte INNER JOIN Mitarbeiter 

  ON Vorgesetzte.VorgesetzterPersonalNr = Mitarbeiter.PersonalNr 

 INNER JOIN Abteilung ON Mitarbeiter.ArbeitetInAbteilungsNr = Abteilung.AbteilungsNr 

 INNER JOIN Standort  ON Abteilung.StandortNr = Standort.StandortNr; 

32. 

SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname 

FROM Mitarbeiter AS AbtLeiter INNER JOIN Abteilung  

  ON AbtLeiter.PersonalNr = Abteilung.AbteilungsleiterPersonalNr 

 INNER JOIN IstBefreundetMit ON (AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr1 

   OR AbtLeiter.PersonalNr = IstBefreundetMit.PersonalNr2) 

 INNER JOIN Mitarbeiter AS Vorgesetzter  

  ON (IstBefreundetMit.PersonalNr1 = Vorgesetzter.PersonalNr 

   OR IstBefreundetMit.PersonalNr2 = Vorgesetzter.PersonalNr) 

  AND AbtLeiter.PersonalNr <> Vorgesetzter.PersonalNr 

 INNER JOIN Mitarbeiter AS p ON Vorgesetzter.PersonalNr = p.VorgesetzterPersonalNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 
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33. 

SELECT DISTINCT AbtLeiter.PersonalNr, AbtLeiter.Vorname, AbtLeiter.Nachname 

FROM Mitarbeiter AS p INNER JOIN Abteilung AS Abt1  

  ON p.ArbeitetInAbteilungsNr = Abt1.AbteilungsNr 

 INNER JOIN IstBefreundetMit  

  ON (Abt1.AbteilungsleiterPersonalNr = IstBefreundetMit.PersonalNr1 

   OR Abt1.AbteilungsleiterPersonalNr = IstBefreundetMit.PersonalNr2) 

 INNER JOIN Abteilung AS Abt2  

  ON (IstBefreundetMit.PersonalNr1 = Abt2.AbteilungsleiterPersonalNr 

   OR IstBefreundetMit.PersonalNr2 = Abt2.AbteilungsleiterPersonalNr) 

  AND Abt1.AbteilungsleiterPersonalNr <> Abt2.AbteilungsleiterPersonalNr 

 INNER JOIN Mitarbeiter AS AbtLeiter  

  ON Abt2.AbteilungsleiterPersonalNr = AbtLeiter.PersonalNr 

WHERE p.Vorname = 'Peter' AND p.Nachname = 'Müller' 

 


