Up a level |
Faußer, Stefan A. and Schwenker, Friedhelm (2015) Selective neural network ensembles in reinforcement learning: Taking the advantage of many agents. Neurocomputing, 169. pp. 350-357. ISSN 0925-2312
Faußer, Stefan A. and Schwenker, Friedhelm (2015) Neural Network Ensembles in Reinforcement Learning. Neural Processing Letters, 41. pp. 55-69. ISSN 1573-773X
Faußer, Stefan A. and Schwenker, Friedhelm (2014) Selective Neural Network Ensembles in Reinforcement Learning. In: (Proceedings of the) 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 23.-25. April 2014, Bruges, Belgium, pp. 105-110. ISBN 9782874190957
Faußer, Stefan A. and Schwenker, Friedhelm (2014) Semi-supervised Clustering of Large Data Sets with Kernel Methods. Pattern Recognition Letters, 37. pp. 78-84. ISSN 0167-8655
Faußer, Stefan A. and Schwenker, Friedhelm (2012) Clustering large datasets with kernel methods. In: (Proceedings of the) 21st International Conference on Pattern Recognition. (ICPR ’12) ; Vol. 1, November, 11-15th, 2012, Tsukuba, Japan, pp. 501-504. ISBN 9781467322164
Faußer, Stefan A. and Schwenker, Friedhelm (2012) Semi-Supervised Kernel Clustering with Sample-to-cluster Weights. In: (Proceedings of the) 1st IAPR TC3 Workshop, PSL 2011, 15.-16. September 2011, Ulm, Germany, pp. 72-81. ISBN 9783642282577
Faußer, Stefan A. and Schwenker, Friedhelm (2011) Ensemble Methods for Reinforcement Learning with Function Approximation. In: (Proceedings of the) 10th International Workshop on Multiple Classifier Systems (MCS), June, 15-17, 2011, Naples, Italy, pp. 56-65. ISBN 9783642215568
Faußer, Stefan A. and Schwenker, Friedhelm (2010) Learning a Strategy with Neural Approximated Temporal-Difference Methods in English Draughts. In: (Proceedings of the) 20th International Conference on Pattern Recognition (ICPR), August, 23-26, 2010, Istanbul, Turkey, pp. 2925-2928. ISBN 9781424475421
Faußer, Stefan A. and Schwenker, Friedhelm (2010) Parallelized Kernel Patch Clustering. In: (Proceedings of the) 4th IAPR TC3 Conference on Artificial Neural Networks in Pattern Recognition (ANNPR), April, 11-13, 2010, Cairo, Egypt, pp. 131-140. ISBN 9783642121586
Faußer, Stefan A. and Schwenker, Friedhelm (2008) Neural Approximation of Monte CarloPolicy Evaluation Deployed in Connect Four. In: (Proceedings of the) 3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), July, 2-4, 2008, Paris, France, pp. 90-100. ISBN 9783540699385
Faußer, Stefan A. (2015) Large state spaces and large data: Utilizing neural network ensembles in reinforcement learning and kernel methods for clustering. Dissertation thesis, Universität Ulm.
Thaler, Fabian and Faußer, Stefan A. and Gewald, Heiko (2021) Using NLP to analyze whether customer statements comply with their inner belief. arXiv:2107.11175.
Gebele, Jens and Brune, Philipp and Faußer, Stefan A. (2022) Face Value: On the Impact of Annotation (In-)Consistencies and Label Ambiguity in Facial Data on Emotion Recognition. In: International Conference on Pattern Recognition (ICPR); 26th Montreal, QC, Canada: IEEE, pp. 2597-2604. ISBN 9781665490627
Meyer, Dany and Faußer, Stefan A. (2023) A framework for the design, implementation and evaluation of ai based real-life learning scenarios for computer science non-majors. In: (Proceedings of the) International Conference on Education, Research and Innovation (ICERI), November, 13-15, 2023, Seville, Spain. ISBN 9788409559428
Finze, Nikola and Jechle, Deinera and Faußer, Stefan A. and Gewald, Heiko (2024) How are We Doing Today? Using Natural Speech Analysis to Assess Older Adults’ Subjective Well-Being. Business & Information Systems Engineering : BISE. ISSN 1867-0202
Vangeepuram, Madhurima and Ehm, Hans and Ratusny, Marco and Faußer, Stefan A. and Heilmayer, Stefan and Welling, Tobias L. (2023) Assessing delivery commitments in supply chains : A matrix-based framework. In: (Proceedings of the) Winter Simulation Conference (WSC) "Simulation for Resilient Systems", December, 10-13, 2023, San Antonio, TX, USA, pp. 2182-2193. ISBN 9798350369663